Answer :
Certainly! Let's proceed step-by-step with the given information.
### Step 1: Plotting the Original Coordinates
We start by plotting the original coordinates of the support columns on graph paper.
1. Point X: [tex]\((-3, 5)\)[/tex]
2. Point Y: [tex]\((4, 5)\)[/tex]
3. Point Z: [tex]\((-3, 1)\)[/tex]
### Step 2: Drawing the Triangle
Once the points are plotted, you can connect them to observe the triangular room layout.
- Draw a line from point X [tex]\((-3, 5)\)[/tex] to point Y [tex]\((4, 5)\)[/tex].
- Draw a line from point Y [tex]\((4, 5)\)[/tex] to point Z [tex]\((-3, 1)\)[/tex].
- Draw a line from point Z [tex]\((-3, 1)\)[/tex] back to point X [tex]\((-3, 5)\)[/tex].
This forms a triangle representing the layout of the room with the given support columns.
### Step 3: Reflecting Points Across the X-axis
To add a mirror wall along the X-axis and find the coordinates of the new positions of the support columns, we simply reflect the y-coordinates of each point across the X-axis. This means negating the y-coordinates.
1. Original Point X: [tex]\((-3, 5)\)[/tex]
- Reflected Point X: [tex]\((-3, -5)\)[/tex]
2. Original Point Y: [tex]\((4, 5)\)[/tex]
- Reflected Point Y: [tex]\((4, -5)\)[/tex]
3. Original Point Z: [tex]\((-3, 1)\)[/tex]
- Reflected Point Z: [tex]\((-3, -1)\)[/tex]
### Step 4: Plotting the Reflected Coordinates
Next, we plot the reflected coordinates on the same graph paper.
1. Reflected Point X: [tex]\((-3, -5)\)[/tex]
2. Reflected Point Y: [tex]\((4, -5)\)[/tex]
3. Reflected Point Z: [tex]\((-3, -1)\)[/tex]
### Step 5: Drawing the Reflected Triangle
Finally, connect the reflected points to visualize the new positions.
- Draw a line from reflected point X [tex]\((-3, -5)\)[/tex] to reflected point Y [tex]\((4, -5)\)[/tex].
- Draw a line from reflected point Y [tex]\((4, -5)\)[/tex] to reflected point Z [tex]\((-3, -1)\)[/tex].
- Draw a line from reflected point Z [tex]\((-3, -1)\)[/tex] back to reflected point X [tex]\((-3, -5)\)[/tex].
Now you have both the original and the reflected triangles on the graph paper, showing how the mirror wall will create the illusion in the same room.
### Summary of New Coordinates
The new coordinates of the support columns after the mirror installation along the X-axis are:
- Reflected Point X: [tex]\((-3, -5)\)[/tex]
- Reflected Point Y: [tex]\((4, -5)\)[/tex]
- Reflected Point Z: [tex]\((-3, -1)\)[/tex]
These steps help us visualize the room's layout and the effect of adding a mirror wall along the X-axis.
### Step 1: Plotting the Original Coordinates
We start by plotting the original coordinates of the support columns on graph paper.
1. Point X: [tex]\((-3, 5)\)[/tex]
2. Point Y: [tex]\((4, 5)\)[/tex]
3. Point Z: [tex]\((-3, 1)\)[/tex]
### Step 2: Drawing the Triangle
Once the points are plotted, you can connect them to observe the triangular room layout.
- Draw a line from point X [tex]\((-3, 5)\)[/tex] to point Y [tex]\((4, 5)\)[/tex].
- Draw a line from point Y [tex]\((4, 5)\)[/tex] to point Z [tex]\((-3, 1)\)[/tex].
- Draw a line from point Z [tex]\((-3, 1)\)[/tex] back to point X [tex]\((-3, 5)\)[/tex].
This forms a triangle representing the layout of the room with the given support columns.
### Step 3: Reflecting Points Across the X-axis
To add a mirror wall along the X-axis and find the coordinates of the new positions of the support columns, we simply reflect the y-coordinates of each point across the X-axis. This means negating the y-coordinates.
1. Original Point X: [tex]\((-3, 5)\)[/tex]
- Reflected Point X: [tex]\((-3, -5)\)[/tex]
2. Original Point Y: [tex]\((4, 5)\)[/tex]
- Reflected Point Y: [tex]\((4, -5)\)[/tex]
3. Original Point Z: [tex]\((-3, 1)\)[/tex]
- Reflected Point Z: [tex]\((-3, -1)\)[/tex]
### Step 4: Plotting the Reflected Coordinates
Next, we plot the reflected coordinates on the same graph paper.
1. Reflected Point X: [tex]\((-3, -5)\)[/tex]
2. Reflected Point Y: [tex]\((4, -5)\)[/tex]
3. Reflected Point Z: [tex]\((-3, -1)\)[/tex]
### Step 5: Drawing the Reflected Triangle
Finally, connect the reflected points to visualize the new positions.
- Draw a line from reflected point X [tex]\((-3, -5)\)[/tex] to reflected point Y [tex]\((4, -5)\)[/tex].
- Draw a line from reflected point Y [tex]\((4, -5)\)[/tex] to reflected point Z [tex]\((-3, -1)\)[/tex].
- Draw a line from reflected point Z [tex]\((-3, -1)\)[/tex] back to reflected point X [tex]\((-3, -5)\)[/tex].
Now you have both the original and the reflected triangles on the graph paper, showing how the mirror wall will create the illusion in the same room.
### Summary of New Coordinates
The new coordinates of the support columns after the mirror installation along the X-axis are:
- Reflected Point X: [tex]\((-3, -5)\)[/tex]
- Reflected Point Y: [tex]\((4, -5)\)[/tex]
- Reflected Point Z: [tex]\((-3, -1)\)[/tex]
These steps help us visualize the room's layout and the effect of adding a mirror wall along the X-axis.