Answer :
Jayden and Alexa made mistakes in their calculations. Let's walk through their mistakes and provide the corrected solution step-by-step.
### Jayden's Approach
1. Jayden incorrectly simplified the combinations and treated the factorial calculations incorrectly. His attempt was:
[tex]\[\frac{6!}{2!(6-2)!} + \frac{6!}{3!(6-3)!} \neq \frac{7!}{3!(7-3)!}\][/tex]
Simplifying,
[tex]\[\frac{6!}{2! \cdot 4!} + \frac{6!}{3! \cdot 3!} \neq \frac{7!}{3! \cdot 4!}\][/tex]
2. Correct calculation of [tex]\({ }_6C_2\)[/tex] and [tex]\({ }_6C_3\)[/tex]:
[tex]\[ { }_6C_2 = \frac{6!}{2! \cdot 4!} = \frac{6 \cdot 5}{2 \cdot 1} = 15 \][/tex]
[tex]\[ { }_6C_3 = \frac{6!}{3! \cdot 3!} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20 \][/tex]
3. Sum of the calculated combinations:
[tex]\[ { }_6C_2 + { }_6C_3 = 15 + 20 = 35 \][/tex]
4. Correct calculation of [tex]\({ }_7C_3\)[/tex]:
[tex]\[ { }_7C_3 = \frac{7!}{3! \cdot 4!} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35 \][/tex]
Therefore, [tex]\({ }_6C_2 + { }_6C_3 = { }_7C_3\)[/tex] is indeed true as both sides simplify to 35.
### Alexa's Approach
1. Alexa's initial step was correct but her use of the least common denominator was convoluted. Here's the correction using combinations:
[tex]\[ { }_6C_2 = \frac{6!}{2! \cdot 4!} \][/tex]
[tex]\[ { }_6C_3 = \frac{6!}{3! \cdot 3!} \][/tex]
[tex]\(\Rightarrow\)[/tex]
[tex]\[ { }_6C_2 + { }_6C_3 = 15 + 20 \][/tex]
2. As before, the combined result is:
[tex]\[ 15 + 20 = 35 \][/tex]
3. Alexa’s final check:
[tex]\[ { }_7C_3 = \frac{7!}{3! \cdot 4!} \][/tex]
[tex]\(\Rightarrow\)[/tex]
[tex]\[ { }_7C_3 = 35 \][/tex]
So, once corrected, Alexa's result too shows [tex]\({ }_6C_2 + { }_6C_3 = { }_7C_3.\)[/tex]
### Conclusion
Both Jayden and Alexa made mistakes initially but when corrected, both paths show the correct result. The identity [tex]\({ }_6C_2 + { }_6C_3 = { }_7C_3\)[/tex] holds true since:
[tex]\[ 15 + 20 = 35,\][/tex]
and hence,
[tex]\[35 = 35.\][/tex]
Thus, Jayden and Alexa both arrive at the correct conclusion when their errors are corrected.
### Jayden's Approach
1. Jayden incorrectly simplified the combinations and treated the factorial calculations incorrectly. His attempt was:
[tex]\[\frac{6!}{2!(6-2)!} + \frac{6!}{3!(6-3)!} \neq \frac{7!}{3!(7-3)!}\][/tex]
Simplifying,
[tex]\[\frac{6!}{2! \cdot 4!} + \frac{6!}{3! \cdot 3!} \neq \frac{7!}{3! \cdot 4!}\][/tex]
2. Correct calculation of [tex]\({ }_6C_2\)[/tex] and [tex]\({ }_6C_3\)[/tex]:
[tex]\[ { }_6C_2 = \frac{6!}{2! \cdot 4!} = \frac{6 \cdot 5}{2 \cdot 1} = 15 \][/tex]
[tex]\[ { }_6C_3 = \frac{6!}{3! \cdot 3!} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20 \][/tex]
3. Sum of the calculated combinations:
[tex]\[ { }_6C_2 + { }_6C_3 = 15 + 20 = 35 \][/tex]
4. Correct calculation of [tex]\({ }_7C_3\)[/tex]:
[tex]\[ { }_7C_3 = \frac{7!}{3! \cdot 4!} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35 \][/tex]
Therefore, [tex]\({ }_6C_2 + { }_6C_3 = { }_7C_3\)[/tex] is indeed true as both sides simplify to 35.
### Alexa's Approach
1. Alexa's initial step was correct but her use of the least common denominator was convoluted. Here's the correction using combinations:
[tex]\[ { }_6C_2 = \frac{6!}{2! \cdot 4!} \][/tex]
[tex]\[ { }_6C_3 = \frac{6!}{3! \cdot 3!} \][/tex]
[tex]\(\Rightarrow\)[/tex]
[tex]\[ { }_6C_2 + { }_6C_3 = 15 + 20 \][/tex]
2. As before, the combined result is:
[tex]\[ 15 + 20 = 35 \][/tex]
3. Alexa’s final check:
[tex]\[ { }_7C_3 = \frac{7!}{3! \cdot 4!} \][/tex]
[tex]\(\Rightarrow\)[/tex]
[tex]\[ { }_7C_3 = 35 \][/tex]
So, once corrected, Alexa's result too shows [tex]\({ }_6C_2 + { }_6C_3 = { }_7C_3.\)[/tex]
### Conclusion
Both Jayden and Alexa made mistakes initially but when corrected, both paths show the correct result. The identity [tex]\({ }_6C_2 + { }_6C_3 = { }_7C_3\)[/tex] holds true since:
[tex]\[ 15 + 20 = 35,\][/tex]
and hence,
[tex]\[35 = 35.\][/tex]
Thus, Jayden and Alexa both arrive at the correct conclusion when their errors are corrected.