7.
a) Find the complement of [tex]30^{\circ}[/tex].

b) If [tex]7x^{\circ}[/tex] and [tex]2x^{\circ}[/tex] form a linear pair, find the value of [tex]x[/tex].



Answer :

Sure, let's break down each part of the problem step by step.

### 7. a) Finding the Complement of 30 Degrees

The complement of an angle [tex]\( \theta \)[/tex] is given by [tex]\( 90^\circ - \theta \)[/tex].

1. Here, [tex]\( \theta = 30^\circ \)[/tex].
2. To find the complement, we calculate:
[tex]\[ 90^\circ - 30^\circ = 60^\circ \][/tex]

So, the complement of [tex]\( 30^\circ \)[/tex] is [tex]\( 60^\circ \)[/tex].

### 7. b) If [tex]\( 7x^\circ \)[/tex] and [tex]\( 2x^\circ \)[/tex] form a linear pair, find the value of [tex]\( x \)[/tex]

A linear pair of angles sums up to [tex]\( 180^\circ \)[/tex].

1. Given angles are [tex]\( 7x^\circ \)[/tex] and [tex]\( 2x^\circ \)[/tex].
2. Therefore, the equation will be:
[tex]\[ 7x + 2x = 180^\circ \][/tex]
3. Simplify the equation:
[tex]\[ 9x = 180^\circ \][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{180}{9} = 20 \][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( 20 \)[/tex].

### Summary

- The complement of [tex]\( 30^\circ \)[/tex] is [tex]\( 60^\circ \)[/tex].
- If [tex]\( 7x^\circ \)[/tex] and [tex]\( 2x^\circ \)[/tex] form a linear pair, the value of [tex]\( x \)[/tex] is [tex]\( 20 \)[/tex].