Simplify:
[tex]\[
\left[2 \div\left(1 + 1 \div \frac{1}{2}\right)\right] \times \left[3 \div \left(\frac{5}{6} \text{ of } \frac{3}{2} \div 1 \frac{1}{4}\right)\right]
\][/tex]



Answer :

Sure, let's go through the problem step-by-step.

We need to simplify the expression:
[tex]\[ \left[2 \div\left(1+1 \div \frac{1}{2}\right)\right] \times\left[3 \div\left(\frac{5}{6} \text { of } \frac{3}{2} \div 1 \frac{1}{4}\right)\right] \][/tex]

### Step 1: Simplify the Inner Expression in the First Bracket
First, simplify the expression inside the first set of brackets:
[tex]\[ 2 \div \left(1 + 1 \div \frac{1}{2}\right) \][/tex]

Consider the term:
[tex]\[ 1 \div \frac{1}{2} = 2 \][/tex]

So the expression now becomes:
[tex]\[ 2 \div \left(1 + 2\right) = 2 \div 3 = \frac{2}{3} \][/tex]

### Step 2: Simplify the Inner Expression in the Second Bracket
Next, simplify the expression inside the second set of brackets:
[tex]\[ 3 \div \left(\frac{5}{6} \text{ of } \frac{3}{2} \div 1\frac{1}{4}\right) \][/tex]

First, we change [tex]\( 1\frac{1}{4} \)[/tex] to an improper fraction:
[tex]\[ 1\frac{1}{4} = 1 + \frac{1}{4} = \frac{5}{4} \][/tex]

Now we handle the expression:
[tex]\[ \frac{5}{6} \text{ of } \frac{3}{2} \div \frac{5}{4} \][/tex]

First, simplify the "of" operation which implies multiplication:
[tex]\[ \frac{5}{6} \times \frac{3}{2} = \frac{15}{12} = \frac{5}{4} \][/tex]

Next, we divide by [tex]\(\frac{5}{4}\)[/tex]:
[tex]\[ \frac{5}{4} \div \frac{5}{4} = 1 \][/tex]

Therefore:
[tex]\[ 3 \div 1 = 3 \][/tex]

### Step 3: Multiply the Two Simplified Parts
Now we have the simplified results from the two brackets:
[tex]\[ \frac{2}{3} \times 3 = \frac{2}{3} \times \frac{3}{1} = 2 \][/tex]

### Final Result
[tex]\[ \left[2 \div\left(1+1 \div \frac{1}{2}\right)\right] \times\left[3 \div\left(\frac{5}{6} \text { of } \frac{3}{2} \div 1 \frac{1}{4}\right)\right] = 2 \][/tex]

In conclusion, the simplified result of the given mathematical expression is:
[tex]\[ 2 \][/tex]