Given: [tex]\(-\frac{1}{2} x \ \textgreater \ 4\)[/tex]

Choose the solution set.

A. [tex]\(\{x \mid x \in R, x \ \textgreater \ -2\}\)[/tex]

B. [tex]\(\{x \mid x \in R, x \ \textless \ -8\}\)[/tex]

C. [tex]\(\{x \mid x \in R, x \ \textless \ -2\}\)[/tex]

D. [tex]\(\{x \mid x \in R, x \ \textgreater \ -8\}\)[/tex]



Answer :

Certainly! Let's solve the inequality step-by-step:

Given the inequality:
[tex]\[ -\frac{1}{2} x > 4 \][/tex]

### Step 1: Isolate the variable [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], we need to get rid of the fraction. We can start by multiplying both sides of the inequality by [tex]\(-2\)[/tex]. However, when we multiply or divide an inequality by a negative number, we must reverse the inequality sign.

So, let's proceed:
[tex]\[ -2 \cdot \left( -\frac{1}{2} x \right) < -2 \cdot 4 \][/tex]

This simplifies to:
[tex]\[ x < -8 \][/tex]

### Step 2: Identify the solution set
The solution to our inequality is:
[tex]\[ x < -8 \][/tex]

Now let's compare this with the given options:
1. [tex]\(\{x \mid x \in \mathbb{R}, x > -2\}\)[/tex]
2. [tex]\(\{x \mid x \in \mathbb{R}, x < -8\}\)[/tex]
3. [tex]\(\{x \mid x \in \mathbb{R}, x < -2\}\)[/tex]
4. [tex]\(\{x \mid x \in \mathbb{R}, x > -8\}\)[/tex]

The correct solution set is:
[tex]\(\{x \mid x \in \mathbb{R}, x < -8\}\)[/tex]

So, the appropriate choice is:
[tex]\(\{x \mid x \in \mathbb{R}, x < -8 \}\)[/tex], which corresponds to option 2.