A car is moving with an average speed of [tex]56 \frac{3}{5} \, \text{km/h}[/tex]. How much distance will it cover in [tex]1 \frac{1}{2} \, \text{hours}[/tex]?



Answer :

Absolutely, let's go through the solution step-by-step to determine the distance covered by the Sor.

1. Determine the average speed:
- The average speed given is [tex]\( 56 \frac{3}{5} \)[/tex] units.
- First, convert the mixed number to an improper fraction or a decimal.
[tex]\[ 56 \frac{3}{5} = 56 + \frac{3}{5} \][/tex]
- Converting the fraction:
[tex]\[ \frac{3}{5} = 0.6 \][/tex]
- Adding the decimal to the whole number:
[tex]\[ 56 + 0.6 = 56.6 \][/tex]
Thus, the average speed is [tex]\( 56.6 \)[/tex] units per hour.

2. Determine the time:
- The time given is [tex]\( 1 \frac{1}{2} \)[/tex] hours.
- First, convert the mixed number to an improper fraction or a decimal.
[tex]\[ 1 \frac{1}{2} = 1 + \frac{1}{2} \][/tex]
- Converting the fraction:
[tex]\[ \frac{1}{2} = 0.5 \][/tex]
- Adding the decimal to the whole number:
[tex]\[ 1 + 0.5 = 1.5 \][/tex]
Thus, the time is [tex]\( 1.5 \)[/tex] hours.

3. Calculate the distance covered:
- The formula for distance is:
[tex]\[ \text{Distance} = \text{Average Speed} \times \text{Time} \][/tex]
- Substitute the known values into the formula:
[tex]\[ \text{Distance} = 56.6 \times 1.5 \][/tex]

4. Calculate the product:
Evaluating the above expression gives:
[tex]\[ 56.6 \times 1.5 = 84.9 \][/tex]

So, the distance covered by the Sor in [tex]\(1 \frac{1}{2}\)[/tex] hours, while moving at an average speed of [tex]\( 56 \frac{3}{5} \)[/tex], is [tex]\(84.9\)[/tex] units.