Answer :
Certainly! Let's balance the chemical equation for the reaction between iron and atmospheric oxygen to form iron oxide (ferric oxide).
The unbalanced chemical equation is:
[tex]\[ \text{Fe} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \][/tex]
1. Counting atoms on both sides:
- On the left, we have:
- Fe: 1 atom
- O: 2 atoms (since it is in the form of O[tex]\(_2\)[/tex])
- On the right, we have:
- Fe: 2 atoms (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex])
- O: 3 atoms (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex])
2. Balancing iron (Fe) atoms:
- We need 2 Fe atoms on the left to match the 2 Fe atoms on the right.
- Updating the equation:
[tex]\[ 2 \text{Fe} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \][/tex]
3. Balancing oxygen (O) atoms:
- Currently, there are 2 O atoms on the left (from O[tex]\(_2\)[/tex]) and 3 O atoms on the right.
- To balance the O atoms, we can adjust the coefficients. We need to have a common multiple of 3 (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex]) and 2 (from O[tex]\(_2\)[/tex]).
- The smallest common multiple of 2 and 3 is 6.
- For the left side:
- We need 3 O[tex]\(_2\)[/tex] molecules to get 6 oxygen atoms:
[tex]\[ 3 \text{O}_2 \][/tex]
- For the right side:
- We need 2 Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex] molecules to get 6 oxygen atoms:
[tex]\[ 2 \text{Fe}_2\text{O}_3 \][/tex]
4. Balancing the iron atoms again:
- With 2 Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex] molecules on the right, we have 4 Fe atoms.
- Thus, we need 4 Fe atoms on the left side:
[tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
Now the equation is balanced:
[tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
From the given options, the correct balanced chemical equation for this reaction is:
A. [tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
The unbalanced chemical equation is:
[tex]\[ \text{Fe} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \][/tex]
1. Counting atoms on both sides:
- On the left, we have:
- Fe: 1 atom
- O: 2 atoms (since it is in the form of O[tex]\(_2\)[/tex])
- On the right, we have:
- Fe: 2 atoms (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex])
- O: 3 atoms (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex])
2. Balancing iron (Fe) atoms:
- We need 2 Fe atoms on the left to match the 2 Fe atoms on the right.
- Updating the equation:
[tex]\[ 2 \text{Fe} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \][/tex]
3. Balancing oxygen (O) atoms:
- Currently, there are 2 O atoms on the left (from O[tex]\(_2\)[/tex]) and 3 O atoms on the right.
- To balance the O atoms, we can adjust the coefficients. We need to have a common multiple of 3 (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex]) and 2 (from O[tex]\(_2\)[/tex]).
- The smallest common multiple of 2 and 3 is 6.
- For the left side:
- We need 3 O[tex]\(_2\)[/tex] molecules to get 6 oxygen atoms:
[tex]\[ 3 \text{O}_2 \][/tex]
- For the right side:
- We need 2 Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex] molecules to get 6 oxygen atoms:
[tex]\[ 2 \text{Fe}_2\text{O}_3 \][/tex]
4. Balancing the iron atoms again:
- With 2 Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex] molecules on the right, we have 4 Fe atoms.
- Thus, we need 4 Fe atoms on the left side:
[tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
Now the equation is balanced:
[tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
From the given options, the correct balanced chemical equation for this reaction is:
A. [tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]