What are the [tex]$x$[/tex] and [tex]$y$[/tex]-intercepts of the line described by the equation?

[tex]\[ -6x + 3y = 18.9 \][/tex]

Enter your answers, in decimal form, in the boxes.

[tex]\[ x \text{-intercept} = \ \square \][/tex]
[tex]\[ y \text{-intercept} = \ \square \][/tex]



Answer :

To determine the [tex]\(x\)[/tex]-intercept and [tex]\(y\)[/tex]-intercept for the given equation [tex]\( -6x + 3y = 18.9 \)[/tex], you need to solve the equation for each intercept separately.

### Finding the [tex]\(x\)[/tex]-intercept:

1. The [tex]\(x\)[/tex]-intercept occurs where [tex]\(y = 0\)[/tex].
2. Substitute [tex]\(y = 0\)[/tex] into the equation:

[tex]\[ -6x + 3(0) = 18.9 \][/tex]

This simplifies to:

[tex]\[ -6x = 18.9 \][/tex]

3. Solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{18.9}{-6} \][/tex]

4. Simplify the result:

[tex]\[ x = -3.15 \][/tex]

Thus, the [tex]\(x\)[/tex]-intercept is [tex]\(-3.15\)[/tex].

### Finding the [tex]\(y\)[/tex]-intercept:

1. The [tex]\(y\)[/tex]-intercept occurs where [tex]\(x = 0\)[/tex].
2. Substitute [tex]\(x = 0\)[/tex] into the equation:

[tex]\[ -6(0) + 3y = 18.9 \][/tex]

This simplifies to:

[tex]\[ 3y = 18.9 \][/tex]

3. Solve for [tex]\(y\)[/tex]:

[tex]\[ y = \frac{18.9}{3} \][/tex]

4. Simplify the result:

[tex]\[ y = 6.3 \][/tex]

Thus, the [tex]\(y\)[/tex]-intercept is [tex]\(6.3\)[/tex].

### Final answers:
[tex]\[ x\text{-intercept} = -3.15 \][/tex]
[tex]\[ y\text{-intercept} = 6.3 \][/tex]