What is the point-slope form of the line with slope [tex]\frac{2}{5}[/tex] that passes through the point [tex](-4, -7)[/tex]?

A. [tex]y + 7 = \frac{2}{5}(x + 4)[/tex]
B. [tex]y - 4 = \frac{2}{5}(x - 7)[/tex]
C. [tex]y + 4 = \frac{2}{5}(x + 7)[/tex]
D. [tex]y - 7 = \frac{2}{5}(x - 4)[/tex]



Answer :

To determine the equation of a line in the point-slope form, we will use the given slope and the coordinates of the given point. The point-slope form of a line is defined as:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

where [tex]\( m \)[/tex] is the slope of the line, and [tex]\((x_1, y_1)\)[/tex] are the coordinates of a point on the line.

Given:
- Slope [tex]\(\frac{2}{5}\)[/tex]
- Point [tex]\((-4, -7)\)[/tex]

We substitute these values into the point-slope form equation.

1. Identify [tex]\( m \)[/tex], [tex]\( x_1 \)[/tex], and [tex]\( y_1 \)[/tex]:

[tex]\[ m = \frac{2}{5}, \quad x_1 = -4, \quad y_1 = -7 \][/tex]

2. Substitute these values into the point-slope form equation:

[tex]\[ y - (-7) = \frac{2}{5} (x - (-4)) \][/tex]

3. Simplify the equation:

Since [tex]\( y - (-7) \)[/tex] becomes [tex]\( y + 7 \)[/tex] and [tex]\( x - (-4) \)[/tex] becomes [tex]\( x + 4 \)[/tex], we get:

[tex]\[ y + 7 = \frac{2}{5} (x + 4) \][/tex]

Thus, the point-slope form of the line with the given slope [tex]\(\frac{2}{5}\)[/tex] and passing through the point [tex]\((-4, -7)\)[/tex] is:

[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]

Now we compare it with the given options:

1. [tex]\( y + 7 = \frac{2}{5}(x + 4) \)[/tex]
2. [tex]\( y - 4 = \frac{2}{5}(x - 7) \)[/tex]
3. [tex]\( y + 4 = \frac{2}{5}(x + 7) \)[/tex]
4. [tex]\( y - 7 = \frac{2}{5}(x - 4) \)[/tex]

The correct option is:

[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]

Therefore, the correct answer is the first option.