Okta Quick Start Guide - Atlant:

My Apps Dashboard

Simplify the expression:

[tex]\[ 6(y+3) \div 2 \cdot 3 + 8 \][/tex]



Answer :

To simplify the expression [tex]\( 6(y+3) \div 2 \cdot 3 + 8 \)[/tex], we'll go through the process step by step:

1. Simplify Inside the Parentheses:
Start with the expression inside the parentheses:
[tex]\[ y + 3 \][/tex]

2. Multiply the Expression by 6:
Next, we multiply the expression [tex]\( y + 3 \)[/tex] by 6:
[tex]\[ 6(y + 3) \][/tex]

3. Divide by 2:
Now, divide the resulting expression by 2:
[tex]\[ \frac{6(y + 3)}{2} \][/tex]
This simplifies to:
[tex]\[ 3(y + 3) \][/tex]

4. Multiply by 3:
Multiply the expression [tex]\( 3(y + 3) \)[/tex] by 3:
[tex]\[ 3(y + 3) \cdot 3 \][/tex]
This gives:
[tex]\[ 9(y + 3) \][/tex]

5. Distribute the 9:
Distribute the 9 into the parenthesis:
[tex]\[ 9y + 27 \][/tex]

6. Add 8:
Finally, add 8 to the expression:
[tex]\[ 9y + 27 + 8 \][/tex]

7. Combine Like Terms:
Combine the constants:
[tex]\[ 9y + 35 \][/tex]

So, the simplified form of the expression [tex]\( 6(y+3) \div 2 \cdot 3 + 8 \)[/tex] is:
[tex]\[ 9y + 35 \][/tex]