Determine the type of relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the given data.

\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 5 & -2 \\
\hline 6 & 9 \\
\hline 7 & 20 \\
\hline 8 & 31 \\
\hline 9 & 42 \\
\hline
\end{tabular}

A. Linear
B. Quadratic
C. Exponential
D. None of the above



Answer :

To determine the type of relationship between the given [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values, we will analyze the data points step-by-step.

### Given Table of Values

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 5 & -2 \\ \hline 6 & 9 \\ \hline 7 & 20 \\ \hline 8 & 31 \\ \hline 9 & 42 \\ \hline \end{array} \][/tex]

### Step-by-Step Analysis

#### Step 1: Check for Linearity

To check if the relationship is linear, we compute the first differences between successive [tex]\(y\)[/tex] values.

[tex]\[ \text{First differences:} \][/tex]
[tex]\[ \begin{align*} y_6 - y_5 &= 9 - (-2) = 11, \\ y_7 - y_6 &= 20 - 9 = 11, \\ y_8 - y_7 &= 31 - 20 = 11, \\ y_9 - y_8 &= 42 - 31 = 11. \end{align*} \][/tex]

If all the differences are equal, the data points form a linear relationship. Here, the first differences are:

[tex]\[ 11, 11, 11, 11. \][/tex]

Since all the first differences are the same, the data suggests a linear relationship.

Thus, we conclude:
The relationship is linear.

Given the options:
- Linear
- Quadratic
- Exponential
- None of the above

### Final Answer

[tex]\[ \boxed{1 \text{ or Linear}} \][/tex]

This analysis shows that the relationship between the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values in the table is linear.