Answer the question based on the following data:

\begin{tabular}{|c|c|c|c|c|c|}
\hline
\begin{tabular}{l}
Quantity \\
of Labor
\end{tabular} & \begin{tabular}{l}
MP of \\
Labor
\end{tabular} & \begin{tabular}{l}
MRP of \\
Labor
\end{tabular} & \begin{tabular}{l}
Quantity of \\
Capital
\end{tabular} & \begin{tabular}{l}
MP of \\
Capital
\end{tabular} & \begin{tabular}{l}
MRP of \\
Capital
\end{tabular} \\
\hline 1 & 15 & [tex]$\$[/tex] 45[tex]$ & 1 & 8 & $[/tex]\[tex]$ 24$[/tex] \\
\hline 2 & 12 & 36 & 2 & 6 & 18 \\
\hline 3 & 9 & 27 & 3 & 5 & 15 \\
\hline 4 & 6 & 18 & 4 & 4 & 12 \\
\hline 5 & 3 & 9 & 5 & 3 & 9 \\
\hline 6 & 1 & 3 & 6 & 2 & 6 \\
\hline
\end{tabular}

Refer to the given data. If the prices of labor and capital are [tex]$\$[/tex] 9[tex]$ and $[/tex]\[tex]$ 15$[/tex] respectively, and labor and capital are the only inputs, at the profit-maximizing level of output, the firm's total costs will be:

A. [tex]$\$[/tex] 90[tex]$

B. $[/tex]\[tex]$ 47$[/tex]

C. [tex]$\$[/tex] 126[tex]$

D. $[/tex]\[tex]$ 106$[/tex]



Answer :

Let's solve the problem step-by-step using the given data. We know the prices of labor and capital are [tex]$9 and $[/tex]15, respectively. We need to determine the optimal quantities of labor and capital to minimize costs and then find the total cost.

Step 1: Identify the optimal quantities of labor and capital.

From the given data:
- The optimal quantity of labor is 5 units.
- The optimal quantity of capital is 2 units.

Step 2: Calculate the cost incurred by using these quantities.

- Labor Cost:
- Price of labor = [tex]$9 per unit - Quantity of labor = 5 units - Total cost of labor = \( 9 \times 5 = \$[/tex]45 \)

- Capital Cost:
- Price of capital = [tex]$15 per unit - Quantity of capital = 2 units - Total cost of capital = \( 15 \times 2 = \$[/tex]30 \)

Step 3: Sum the costs to find the total cost.

- Total cost = Total cost of labor + Total cost of capital
- Total cost = [tex]\( \$45 + \$30 = \$75 \)[/tex]

Thus, the firm's total cost at the profit-maximizing level of output is \[tex]$75. Therefore, the correct answer from the given options (listed as $[/tex]\[tex]$ 90$[/tex], [tex]$\$[/tex] 47[tex]$, $[/tex]\[tex]$ 126$[/tex], [tex]$\$[/tex] 106[tex]$) is none of these correctly represent the total cost calculated. However, based on calculated results, the correct total cost is \$[/tex]75.