Loren has the samples of elements listed below at room temperature. He exposes the samples to the same heat source until each sample reaches a temperature of [tex]$90.0^{\circ} C$[/tex].

[tex]\[
\begin{array}{l}
10 \, \text{g of} \, \text{Al} (s) \, \left( C_p = 0.897 \, \text{J} / \left( \text{g} \cdot{ }^{\circ} \text{C} \right) \right) \\
10 \, \text{g of} \, \text{Ag} (s) \, \left( C_p = 0.234 \, \text{J} / \text{g} \cdot{ }^{\circ} \text{C} \right) \\
10 \, \text{g of} \, \text{Fe} (s) \, \left( C_p = 0.450 \, \text{J} / \text{g} \cdot{ }^{\circ} \text{C} \right) \\
10 \, \text{g of} \, \text{Zn} (s) \, \left( C_p = 0.387 \, \text{J} / \text{g} \cdot{ }^{\circ} \text{C} \right)
\end{array}
\][/tex]

From first to last, which lists the order in which these samples will reach [tex]$90.0^{\circ} C$[/tex]?

A. Al, Fe, Zn, Ag
B. Ag, Zn, Fe, Al
C. Al, Fe, Ag, Zn
D. Ag, Al, Zn, Fe



Answer :

Let's solve the problem step-by-step:

1. Identify the given variables:
- Mass of each sample: [tex]\( m = 10 \)[/tex] grams
- Initial temperature: [tex]\( T_i = 25.0^{\circ} \text{C} \)[/tex] (room temperature)
- Final temperature: [tex]\( T_f = 90.0^{\circ} \text{C} \)[/tex]
- Specific heat capacities ([tex]\( C_p \)[/tex]):
- Aluminum (Al): [tex]\( C_{p, \text{Al}} = 0.897 \, \text{J/(g⋅°C)} \)[/tex]
- Silver (Ag): [tex]\( C_{p, \text{Ag}} = 0.234 \, \text{J/(g⋅°C)} \)[/tex]
- Iron (Fe): [tex]\( C_{p, \text{Fe}} = 0.450 \, \text{J/(g⋅°C)} \)[/tex]
- Zinc (Zn): [tex]\( C_{p, \text{Zn}} = 0.387 \, \text{J/(g⋅°C)} \)[/tex]

2. Calculate the temperature change ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_f - T_i = 90.0^{\circ} \text{C} - 25.0^{\circ} \text{C} = 65.0^{\circ} \text{C} \][/tex]

3. Calculate the heat required (q) for each metal:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]

- For Aluminum ([tex]\( q_{\text{Al}} \)[/tex]):
[tex]\[ q_{\text{Al}} = 10 \, \text{g} \cdot 0.897 \, \text{J/(g⋅°C)} \cdot 65.0^{\circ} \text{C} = 583.05 \, \text{J} \][/tex]

- For Silver ([tex]\( q_{\text{Ag}} \)[/tex]):
[tex]\[ q_{\text{Ag}} = 10 \, \text{g} \cdot 0.234 \, \text{J/(g⋅°C)} \cdot 65.0^{\circ} \text{C} = 152.10 \, \text{J} \][/tex]

- For Iron ([tex]\( q_{\text{Fe}} \)[/tex]):
[tex]\[ q_{\text{Fe}} = 10 \, \text{g} \cdot 0.450 \, \text{J/(g⋅°C)} \cdot 65.0^{\circ} \text{C} = 292.50 \, \text{J} \][/tex]

- For Zinc ([tex]\( q_{\text{Zn}} \)[/tex]):
[tex]\[ q_{\text{Zn}} = 10 \, \text{g} \cdot 0.387 \, \text{J/(g⋅°C)} \cdot 65.0^{\circ} \text{C} = 251.55 \, \text{J} \][/tex]

4. Determine the order in which the samples will reach [tex]\( 90.0^{\circ} \text{C} \)[/tex]:

The sample that requires the least amount of heat to reach the desired temperature will heat up the fastest.

Order of heat required:
- Silver (Ag) needs [tex]\( 152.10 \, \text{J} \)[/tex]
- Zinc (Zn) needs [tex]\( 251.55 \, \text{J} \)[/tex]
- Iron (Fe) needs [tex]\( 292.50 \, \text{J} \)[/tex]
- Aluminum (Al) needs [tex]\( 583.05 \, \text{J} \)[/tex]

Therefore, the order in which these samples will reach [tex]\( 90.0^{\circ} \text{C} \)[/tex] from first to last is:

[tex]\[ \text{Ag} , \text{Zn} , \text{Fe} , \text{Al} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{\text{Ag} , \text{Zn} , \text{Fe} , \text{Al}} \][/tex]