2. The table below shows the amount of time that Otto spent doing 3 chores at home.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{Chore} & \multicolumn{1}{c|}{Time} \\
\hline Washing dishes & 1 hour 25 minutes \\
\hline Painting walls & 2 hours 10 minutes \\
\hline Folding clothes & 45 minutes \\
\hline
\end{tabular}

What was the total number of hours that Otto spent doing the 3 chores?

F. 3
G. [tex]\( 3 \frac{4}{5} \)[/tex]
H. [tex]\( 4 \frac{1}{3} \)[/tex]
J. [tex]\( 5 \frac{2}{3} \)[/tex]
K. [tex]\( 6 \frac{1}{3} \)[/tex]



Answer :

Sure! Let's break down the question and calculate the total number of hours Otto spent doing the three chores.

First, we need to find the total time spent on each chore individually in minutes.

1. Washing dishes:
- 1 hour 25 minutes
- Convert the hours to minutes: 1 hour 60 minutes/hour = 60 minutes
- Add the remaining minutes: 60 minutes + 25 minutes = 85 minutes

2. Painting walls:
- 2 hours 10 minutes
- Convert the hours to minutes: 2 hours
60 minutes/hour = 120 minutes
- Add the remaining minutes: 120 minutes + 10 minutes = 130 minutes

3. Folding clothes:
- 45 minutes

Now, we sum up all the minutes:
[tex]\[ 85 \, \text{minutes} + 130 \, \text{minutes} + 45 \, \text{minutes} = 260 \, \text{minutes} \][/tex]

Next, we convert the total minutes back to hours and minutes:
- 60 minutes = 1 hour
- Total hours: [tex]\( \frac{260}{60} = 4 \)[/tex] hours with a remainder:
[tex]\[ 260 \, \text{minutes} \div 60 = 4 \, \text{hours and} \, 20 \, \text{minutes} \][/tex]

Now, convert the remaining 20 minutes into a fraction of an hour:
[tex]\[ 20 \, \text{minutes} = \frac{20}{60} \, \text{hours} = \frac{1}{3} \, \text{hours} \][/tex]

Thus, the total time Otto spent on chores is:
[tex]\[ 4 \, \text{hours} + \frac{1}{3} \, \text{hour} = 4 \frac{1}{3} \, \text{hours} \][/tex]

Therefore, the correct answer is:
[tex]\[ H. \, 4 \frac{1}{3} \][/tex]