To solve for [tex]\( 2a^2 - b \)[/tex] given [tex]\( a = -4 \)[/tex] and [tex]\( b = -3 \)[/tex], follow these steps:
1. Square the value of [tex]\(a\)[/tex]:
Given [tex]\( a = -4 \)[/tex], we find [tex]\( a^2 \)[/tex].
[tex]\[
a^2 = (-4)^2 = 16
\][/tex]
2. Multiply the result by 2:
[tex]\[
2a^2 = 2 \times 16 = 32
\][/tex]
3. Substitute [tex]\( b = -3 \)[/tex] into the expression [tex]\( 2a^2 - b \)[/tex]:
[tex]\[
2a^2 - b = 32 - (-3)
\][/tex]
4. Simplify the expression:
Subtracting a negative is the same as adding its positive:
[tex]\[
32 - (-3) = 32 + 3 = 35
\][/tex]
Therefore, the value of [tex]\( 2a^2 - b \)[/tex] when [tex]\( a = -4 \)[/tex] and [tex]\( b = -3 \)[/tex] is [tex]\( \boxed{35} \)[/tex].