Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]

---

Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ y = x^y \frac{dy}{dx} = \][/tex]

Response:
[tex]\[ y = x^y \][/tex]
[tex]\[ \frac{dy}{dx} = \][/tex]



Answer :

Sure, let's find the derivative [tex]\(\frac{dy}{dx}\)[/tex] for the equation [tex]\(y = x^y\)[/tex] using implicit differentiation step-by-step.

### Step 1: Rewrite the Equation
Let's start by taking the natural logarithm of both sides of the equation to make differentiation easier:
[tex]\[ \ln(y) = \ln(x^y) \][/tex]

### Step 2: Apply Logarithm Properties
We can use the property of logarithms that states [tex]\(\ln(a^b) = b \ln(a)\)[/tex]:
[tex]\[ \ln(y) = y \ln(x) \][/tex]

### Step 3: Differentiate Both Sides with Respect to [tex]\(x\)[/tex]
We will use implicit differentiation here. Differentiate both sides with respect to [tex]\(x\)[/tex]:

#### Left Side:
[tex]\[ \frac{d}{dx} [\ln(y)] = \frac{1}{y} \frac{dy}{dx} \][/tex]

#### Right Side:
Use the product rule for differentiation:
[tex]\[ \frac{d}{dx} [y \ln(x)] = \ln(x) \frac{dy}{dx} + y \frac{d}{dx} [\ln(x)] \][/tex]

Since [tex]\(\frac{d}{dx} [\ln(x)] = \frac{1}{x}\)[/tex], the right side becomes:
[tex]\[ \ln(x) \frac{dy}{dx} + y \frac{1}{x} \][/tex]

### Step 4: Set Equations Equal
Combine the differentiated left and right sides:
[tex]\[ \frac{1}{y} \frac{dy}{dx} = \ln(x) \frac{dy}{dx} + \frac{y}{x} \][/tex]

### Step 5: Solve for [tex]\(\frac{dy}{dx}\)[/tex]
Isolate [tex]\(\frac{dy}{dx}\)[/tex] on one side of the equation:
[tex]\[ \frac{1}{y} \frac{dy}{dx} - \ln(x) \frac{dy}{dx} = \frac{y}{x} \][/tex]

Factor out [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \left( \frac{1}{y} - \ln(x) \right) \frac{dy}{dx} = \frac{y}{x} \][/tex]

Thus,
[tex]\[ \frac{dy}{dx} = \frac{\frac{y}{x}}{\frac{1}{y} - \ln(x)} \][/tex]

### Step 6: Simplify
Simplifying the equation gives us:
[tex]\[ \frac{dy}{dx} = \frac{y}{x \left( \frac{1}{y} - \ln(x) \right)} \][/tex]

Combining the terms in the denominator:
[tex]\[ \frac{dy}{dx} = \frac{y^2}{x (1 - y \ln(x))} \][/tex]

So, the derivative [tex]\(\frac{dy}{dx}\)[/tex] for the equation [tex]\( y = x^y \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{y^2}{x (1 - y \ln(x))} \][/tex]