Answer :

Sure, let's solve the system of linear equations step-by-step:

[tex]\[ \begin{cases} -7x + 8y = 9 \\ 5x - 4y = -3 \end{cases} \][/tex]

### Step 1: Express one of the variables in terms of the other

Let's solve the second equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:

[tex]\[ 5x - 4y = -3 \][/tex]

First, isolate the term with [tex]\( y \)[/tex]:

[tex]\[ -4y = -5x - 3 \][/tex]

Divide both sides by [tex]\( -4 \)[/tex]:

[tex]\[ y = \frac{5x + 3}{4} \][/tex]

### Step 2: Substitute [tex]\( y \)[/tex] into the other equation

Substitute [tex]\( y = \frac{5x + 3}{4} \)[/tex] into the first equation:

[tex]\[ -7x + 8\left(\frac{5x + 3}{4}\right) = 9 \][/tex]

Simplify inside the parentheses:

[tex]\[ -7x + 10x + 6 = 9 \][/tex]

Combine like terms:

[tex]\[ 3x + 6 = 9 \][/tex]

Subtract 6 from both sides:

[tex]\[ 3x = 3 \][/tex]

Divide both sides by 3:

[tex]\[ x = 1 \][/tex]

### Step 3: Find the value of [tex]\( y \)[/tex]

Now that we have [tex]\( x = 1 \)[/tex], substitute this value back into the expression for [tex]\( y \)[/tex]:

[tex]\[ y = \frac{5(1) + 3}{4} \][/tex]

Simplify:

[tex]\[ y = \frac{5 + 3}{4} = \frac{8}{4} = 2 \][/tex]

### Step 4: Verify the solution

Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 2 \)[/tex] back into the original equations to ensure they are true.

For the first equation:
[tex]\[ -7(1) + 8(2) = -7 + 16 = 9 \][/tex]
This is correct.

For the second equation:
[tex]\[ 5(1) - 4(2) = 5 - 8 = -3 \][/tex]
This is also correct.

### Conclusion

The solution to the system of equations is:

[tex]\[ \boxed{x = 1, y = 2} \][/tex]