\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 3 \\
\hline
-1 & -2 \\
\hline
0 & -3 \\
\hline
1 & 0 \\
\hline
2 & 7 \\
\hline
\end{tabular}

What is the rate of change for the interval between 0 and 2 for the quadratic equation [tex]\( f(x) = 2x^2 + x - 3 \)[/tex] represented in the table?

A. [tex]\( \frac{1}{5} \)[/tex]

B. 4

C. 5

D. 10



Answer :

To determine the rate of change for the interval between [tex]\( x = 0 \)[/tex] and [tex]\( x = 2 \)[/tex] for the given function [tex]\( f(x) = 2x^2 + x - 3 \)[/tex], we need to calculate the change in the function's values over that interval and divide it by the change in [tex]\( x \)[/tex].

Here are the steps for calculating the rate of change:

1. Identify the values of [tex]\( f(x) \)[/tex] at the endpoints of the interval:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(x) \)[/tex] is [tex]\( -3 \)[/tex] (as given by the table).
- At [tex]\( x = 2 \)[/tex], [tex]\( f(x) \)[/tex] is [tex]\( 7 \)[/tex] (as given by the table).

2. Calculate the difference in the function's values:
[tex]\[ f(2) - f(0) = 7 - (-3) = 7 + 3 = 10 \][/tex]

3. Calculate the difference in [tex]\( x \)[/tex]-values:
[tex]\[ 2 - 0 = 2 \][/tex]

4. Compute the rate of change using the formula:
[tex]\[ \text{Rate of change} = \frac{ \Delta f(x) }{ \Delta x } = \frac{ f(2) - f(0) }{ 2 - 0 } = \frac{ 10 }{ 2 } = 5 \][/tex]

Hence, the rate of change for the interval between [tex]\( x = 0 \)[/tex] and [tex]\( x = 2 \)[/tex] is [tex]\( 5.0 \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{5} \][/tex]