1 mol of gas occupies [tex]$24 \, \text{dm}^3$[/tex]. Hence, volume [tex]=$\text{number of moles of gas} \times 24 \, \text{dm}^3$[/tex].

Calculate the number of moles of nitrogen gas:

moles of nitrogen gas [tex]\left(N_2\right)=\frac{86 \, \text{g}}{28 \, \text{g/mol}} = \text{mol (3dp)}[/tex].



Answer :

To determine the number of moles of nitrogen gas ([tex]\(N_2\)[/tex]), we are given:

- The mass of the nitrogen gas ([tex]\(N_2\)[/tex]) is 86 grams.
- The molar mass of [tex]\(N_2\)[/tex] is 28 grams per mole.

We can use the relationship for calculating the number of moles:

[tex]\[ \text{Number of moles} = \frac{\text{Mass of substance}}{\text{Molar mass of substance}} \][/tex]

Substitute the given values into the equation:

[tex]\[ \text{Number of moles of } N_2 = \frac{86 \text{ grams}}{28 \text{ grams per mole}} \][/tex]

Perform the division:

[tex]\[ \text{Number of moles of } N_2 = \frac{86}{28} \approx 3.0714285714285716 \][/tex]

To express this value to three decimal places:

[tex]\[ \text{Number of moles of } N_2 \approx 3.071 \][/tex]

Therefore, the number of moles of nitrogen gas ([tex]\(N_2\)[/tex]) when rounded to three decimal places is:

[tex]\[ 3.071 \text{ mol} \][/tex]