Solve for [tex]$y$[/tex] in the equation below.

Round your answer to the nearest hundredth. Do not round any intermediate computations.

[tex]\[
\begin{array}{l}
15^{9y} = 2 \\
y = \square
\end{array}
\][/tex]



Answer :

To solve for [tex]\( y \)[/tex] in the equation [tex]\( 15^{9y} = 2 \)[/tex], follow these steps:

1. Take the natural logarithm (ln) of both sides:
[tex]\[ \ln(15^{9y}) = \ln(2) \][/tex]

2. Use the property of logarithms that states [tex]\(\ln(a^b) = b \cdot \ln(a)\)[/tex]:
[tex]\[ 9y \cdot \ln(15) = \ln(2) \][/tex]

3. Solve for [tex]\( y \)[/tex] by isolating it on one side of the equation:
[tex]\[ y = \frac{\ln(2)}{9 \cdot \ln(15)} \][/tex]

4. Substitute the known values for [tex]\(\ln(2)\)[/tex] and [tex]\(\ln(15)\)[/tex]:
[tex]\[ \ln(2) \approx 0.6931471805599453 \][/tex]
[tex]\[ \ln(15) \approx 2.70805020110221 \][/tex]

5. Calculate the denominator:
[tex]\[ 9 \cdot \ln(15) \approx 9 \cdot 2.70805020110221 = 24.37245180991989 \][/tex]

6. Calculate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{0.6931471805599453}{24.37245180991989} \approx 0.02843978053442394 \][/tex]

7. Round the result for [tex]\( y \)[/tex] to the nearest hundredth:
[tex]\[ y \approx 0.03 \][/tex]

Thus, the value of [tex]\( y \)[/tex] rounded to the nearest hundredth is [tex]\(\boxed{0.03}\)[/tex].