The value of [tex]$y$[/tex] varies directly with [tex]$x$[/tex].

Solve for [tex][tex]$y$[/tex][/tex] when [tex]$x = 12$[/tex].

[tex]\[
\begin{array}{c}
k = -4 \\
y = [?]
\end{array}
\][/tex]

Remember: [tex]$y = kx$[/tex]



Answer :

Sure! Let's solve for [tex]\( y \)[/tex] given that the value of [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex].

The direct variation relationship means we have the equation:

[tex]\[ y = kx \][/tex]

where [tex]\( k \)[/tex] is the constant of proportionality.

Given:
[tex]\[ x = 12 \][/tex]
[tex]\[ k = -4 \][/tex]

We can substitute these values into the equation:

[tex]\[ y = kx \][/tex]
[tex]\[ y = (-4) \times 12 \][/tex]

Now, we solve for [tex]\( y \)[/tex]:

[tex]\[ y = -4 \times 12 = -48 \][/tex]

Therefore, when [tex]\( x = 12 \)[/tex] and [tex]\( k = -4 \)[/tex], the value of [tex]\( y \)[/tex] is:

[tex]\[ y = -48 \][/tex]