The value of [tex]$y$[/tex] varies directly with [tex]$x$[/tex]. Solve for [tex][tex]$y$[/tex][/tex] when [tex]$x = -3$[/tex].

Given:
[tex]\[
\begin{array}{r}
k = -3 \\
y = ?
\end{array}
\][/tex]

Remember: [tex]$y = kx$[/tex]



Answer :

Certainly! Let's solve this step-by-step, given that the value of [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex]. This means we can use the formula for direct variation, which is:

[tex]\[ y = kx \][/tex]

We're given the following values:
[tex]\[ k = -3 \][/tex]
[tex]\[ x = -3 \][/tex]

Now, substitute these values into the direct variation formula:

[tex]\[ y = (-3) \cdot (-3) \][/tex]

When you multiply these values together:

[tex]\[ y = 9 \][/tex]

So, the value of [tex]\( y \)[/tex] when [tex]\( x = -3 \)[/tex] is:

[tex]\[ y = 9 \][/tex]