Multiply the polynomials.

[tex]\[ \left(3x^2 + 4x + 4\right)(2x - 4) \][/tex]

A. [tex]\[6x^3 - 4x^2 + 8x - 16\][/tex]

B. [tex]\[6x^3 - 4x^2 - 8x - 16\][/tex]

C. [tex]\[6x^3 - 20x^2 - 24x - 16\][/tex]

D. [tex]\[6x^3 - 4x^2 - 8x + 16\][/tex]



Answer :

To multiply the polynomials [tex]\((3x^2 + 4x + 4)\)[/tex] and [tex]\((2x - 4)\)[/tex], we need to carefully distribute each term in the first polynomial by each term in the second polynomial. Here is the step-by-step solution:

1. Distribute [tex]\(3x^2\)[/tex] by each term in [tex]\(2x - 4\)[/tex]:

[tex]\[ 3x^2 \cdot 2x = 6x^3 \][/tex]
[tex]\[ 3x^2 \cdot (-4) = -12x^2 \][/tex]

2. Distribute [tex]\(4x\)[/tex] by each term in [tex]\(2x - 4\)[/tex]:

[tex]\[ 4x \cdot 2x = 8x^2 \][/tex]
[tex]\[ 4x \cdot (-4) = -16x \][/tex]

3. Distribute [tex]\(4\)[/tex] by each term in [tex]\(2x - 4\)[/tex]:

[tex]\[ 4 \cdot 2x = 8x \][/tex]
[tex]\[ 4 \cdot (-4) = -16 \][/tex]

4. Combine all the results:

[tex]\[ 6x^3 - 12x^2 + 8x^2 - 16x + 8x - 16 \][/tex]

5. Combine like terms (terms with the same power of [tex]\(x\)[/tex]):

[tex]\[ 6x^3 + (-12x^2 + 8x^2) + (-16x + 8x) - 16 \][/tex]

Simplifying this:

[tex]\[ 6x^3 - 4x^2 - 8x - 16 \][/tex]

So, the product of [tex]\((3x^2 + 4x + 4)\)[/tex] and [tex]\((2x - 4)\)[/tex] is:

[tex]\[ 6x^3 - 4x^2 - 8x - 16 \][/tex]

Therefore, the correct answer is:

B. [tex]\(6x^3 - 4x^2 - 8x - 16\)[/tex]