Simplify:
[tex]\[ 4(2x - 8) \][/tex]

A. [tex]\(8x - 8\)[/tex]
B. [tex]\(8x - 32\)[/tex]
C. [tex]\(8x + 32\)[/tex]
D. [tex]\(64x\)[/tex]



Answer :

To simplify the expression [tex]\( 4(2x - 8) \)[/tex], follow these steps:

1. Distribute the 4 to both terms inside the parentheses:
[tex]\[ 4 \cdot (2x - 8) = 4 \cdot 2x - 4 \cdot 8 \][/tex]

2. Multiply the constants:
[tex]\[ 4 \cdot 2x = 8x \][/tex]
[tex]\[ 4 \cdot 8 = 32 \][/tex]

3. Combine the results to form the simplified expression:
[tex]\[ 8x - 32 \][/tex]

So, the expression [tex]\( 4(2x - 8) \)[/tex] simplifies to:
[tex]\[ 8x - 32 \][/tex]