Select the answer that simplifies the following expression correctly:

[tex]\[ 5 - 3(x + 5) - 8x \][/tex]

A. [tex]\( 5 - 3x + 15 - 8x \)[/tex]

B. [tex]\( 5 - 3x - 15 - 8x \)[/tex]

C. [tex]\( 5 - 3x - 15 - 8x \)[/tex]

D. [tex]\( 5 - 3x - 15 - 8x \)[/tex]



Answer :

Sure, let's simplify the expression step-by-step:

[tex]\[ 5 - 3(x + 5) - 8x \][/tex]

1. Start by distributing the [tex]\(-3\)[/tex] through the [tex]\((x + 5)\)[/tex]:

[tex]\[ 5 - 3x - 3 \cdot 5 - 8x \][/tex]

2. Multiply [tex]\(-3\)[/tex] by each term inside the parentheses:

[tex]\[ 5 - 3x - 15 - 8x \][/tex]

3. Combine the constant terms and the terms involving [tex]\(x\)[/tex]:

[tex]\[ (5 - 15) - (3x + 8x) \][/tex]

4. Simplify the constant terms:

[tex]\[ -10 - (3x + 8x) \][/tex]

5. Combine the [tex]\(x\)[/tex] terms:

[tex]\[ -10 - 11x \][/tex]

Therefore, the simplified expression is:

[tex]\[ -11x - 10 \][/tex]

So the correct answer is:

[tex]\[ -11x - 10 \][/tex]