If 'when' means '[tex]$x$[/tex]', 'you' means '[tex]$\div$[/tex]', 'come' means '[tex]$-$[/tex]', and 'will' means '[tex]$+$[/tex]', then what will be the value of '15 when 13 will 1326 you 34 come 48'?

Translate the given statement using the provided meanings:

15 when 13 will 1326 you 34 come 48

becomes:

15 [tex]$x$[/tex] 13 [tex]$+$[/tex] 1326 [tex]$\div$[/tex] 34 [tex]$-$[/tex] 48

Calculate the value:

[tex]\[ 15 \times 13 + \frac{1326}{34} - 48 \][/tex]



Answer :

Sure, let's break down the problem step-by-step, translating the given terms as specified:

1. Translation of terms:
- "when" means multiplication ([tex]$\times$[/tex])
- "you" means division ([tex]$\div$[/tex])
- "come" means subtraction ([tex]$-$[/tex])
- "will" means addition ([tex]$+$[/tex])

2. Given expression:
- The expression is: 15 when 13 will 1326 you 34 come 48

3. Translate the expression into mathematical terms:
- 15 when 13 becomes [tex]\( 15 \times 13 \)[/tex]
- will 1326 becomes [tex]\( + 1326 \)[/tex]
- you 34 becomes [tex]\( \div 34 \)[/tex]
- come 48 becomes [tex]\( - 48 \)[/tex]

4. Construct the mathematical expression:
- [tex]\( 15 \times 13 + 1326 \div 34 - 48 \)[/tex]

5. Calculate step-by-step:
- First, perform the multiplication: [tex]\( 15 \times 13 = 195 \)[/tex]
- Next, perform the division: [tex]\( 1326 \div 34 = 39 \)[/tex]
- Then perform the addition: [tex]\( 195 + 39 = 234 \)[/tex]
- Finally, perform the subtraction: [tex]\( 234 - 48 = 186 \)[/tex]

So, the value of '15 when 13 will 1326 you 34 come 48' is 186.0