Solve the following literal equation for [tex]h[/tex].

[tex]\[ V = \frac{1}{3} B h \][/tex]

A. [tex]\( B = \frac{3 V}{h} \)[/tex]
B. [tex]\( h = \frac{3 V}{B} \)[/tex]
C. [tex]\( h = \frac{V}{3 B} \)[/tex]
D. [tex]\( h = \frac{3 h V}{h B} \)[/tex]



Answer :

To solve the equation [tex]\( V = \frac{1}{3} B h \)[/tex] for [tex]\( h \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ V = \frac{1}{3} B h \][/tex]

2. To eliminate the fraction, multiply both sides of the equation by 3:
[tex]\[ 3V = B h \][/tex]

3. Isolate [tex]\( h \)[/tex] by dividing both sides of the equation by [tex]\( B \)[/tex]:
[tex]\[ h = \frac{3V}{B} \][/tex]

Therefore, the solution to the equation [tex]\( V = \frac{1}{3} B h \)[/tex] for [tex]\( h \)[/tex] is:
[tex]\[ h = \frac{3V}{B} \][/tex]