Solve the inequality for [tex]$x$[/tex]:
[tex]\[ 3x \ \textgreater \ 15 \][/tex]

A. [tex]x \ \textgreater \ 5[/tex]
B. [tex]x \ \textgreater \ -5[/tex]
C. [tex]x \ \textless \ 5[/tex]
D. [tex]x \ \textless \ -5[/tex]



Answer :

To solve the inequality [tex]\(3x > 15\)[/tex] for [tex]\(x\)[/tex], follow these steps:

1. Start with the given inequality:
[tex]\[ 3x > 15 \][/tex]

2. Isolate the variable [tex]\(x\)[/tex] by dividing both sides of the inequality by the coefficient of [tex]\(x\)[/tex], which is 3. This step simplifies the inequality:
[tex]\[ \frac{3x}{3} > \frac{15}{3} \][/tex]

3. Simplify the division: When you divide both sides by 3, you get:
[tex]\[ x > 5 \][/tex]

So, the solution to the inequality [tex]\(3x > 15\)[/tex] is:

[tex]\[ x > 5 \][/tex]

Out of the given options:
- [tex]\( x > 5 \)[/tex]
- [tex]\( x > -5 \)[/tex]
- [tex]\( x < 5 \)[/tex]
- [tex]\( x < -5 \)[/tex]

The correct choice is:

[tex]\[ x > 5 \][/tex]