To solve the inequality [tex]\(3x > 15\)[/tex] for [tex]\(x\)[/tex], follow these steps:
1. Start with the given inequality:
[tex]\[
3x > 15
\][/tex]
2. Isolate the variable [tex]\(x\)[/tex] by dividing both sides of the inequality by the coefficient of [tex]\(x\)[/tex], which is 3. This step simplifies the inequality:
[tex]\[
\frac{3x}{3} > \frac{15}{3}
\][/tex]
3. Simplify the division: When you divide both sides by 3, you get:
[tex]\[
x > 5
\][/tex]
So, the solution to the inequality [tex]\(3x > 15\)[/tex] is:
[tex]\[
x > 5
\][/tex]
Out of the given options:
- [tex]\( x > 5 \)[/tex]
- [tex]\( x > -5 \)[/tex]
- [tex]\( x < 5 \)[/tex]
- [tex]\( x < -5 \)[/tex]
The correct choice is:
[tex]\[
x > 5
\][/tex]