To determine which given expression is equal to [tex]\(5^0 + 2^1 \)[/tex], let’s evaluate each option step-by-step.
First, calculate [tex]\(5^0 + 2^1\)[/tex]:
- [tex]\(5^0 = 1\)[/tex] because any number raised to the power of 0 is 1.
- [tex]\(2^1 = 2\)[/tex] because 2 raised to the power of 1 is 2.
Thus, [tex]\(5^0 + 2^1 = 1 + 2 = 3\)[/tex].
Now, compare this value (which is 3) to each given expression:
1. Evaluate [tex]\(6^0 - 6^1\)[/tex]:
- [tex]\(6^0 = 1\)[/tex]
- [tex]\(6^1 = 6\)[/tex]
Thus, [tex]\(6^0 - 6^1 = 1 - 6 = -5\)[/tex].
2. Evaluate [tex]\(6^0 - 3^0\)[/tex]:
- [tex]\(6^0 = 1\)[/tex]
- [tex]\(3^0 = 1\)[/tex]
Thus, [tex]\(6^0 - 3^0 = 1 - 1 = 0\)[/tex].
3. Evaluate [tex]\(2^0 + 2^1\)[/tex]:
- [tex]\(2^0 = 1\)[/tex]
- [tex]\(2^1 = 2\)[/tex]
Thus, [tex]\(2^0 + 2^1 = 1 + 2 = 3\)[/tex].
4. Evaluate [tex]\(2^0 \$_1^1\)[/tex]:
- The expression [tex]\(2^0 \$_1^1\)[/tex] isn’t clearly valid as it contains an unspecified operation ($).
From these evaluations, the expression [tex]\(2^0 + 2^1\)[/tex] equals 3.
Therefore, the correct answer is:
[tex]\[ \boxed{2^0 + 2^1} \][/tex]