What are the values of [tex]\(x\)[/tex] in the equation [tex]4x^2 + 4x - 3 = 0[/tex]?

A. [tex]x = -1.5, 0.5[/tex]

B. [tex]x = -0.5, -1.5[/tex]

C. [tex]x = \frac{-4 \pm \sqrt{-32}}{8}[/tex]

D. [tex]x = \frac{-4 \pm \sqrt{-64}}{8}[/tex]



Answer :

To solve the quadratic equation [tex]\(4x^2 + 4x - 3 = 0\)[/tex], we can use the quadratic formula, which is given by:

[tex]\[ x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \][/tex]

Here, the coefficients are [tex]\(A = 4\)[/tex], [tex]\(B = 4\)[/tex], and [tex]\(C = -3\)[/tex].

1. Calculate the discriminant:

The discriminant [tex]\(\Delta\)[/tex] is given by:

[tex]\[ \Delta = B^2 - 4AC \][/tex]

Substitute the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:

[tex]\[ \Delta = 4^2 - 4 \cdot 4 \cdot -3 = 16 + 48 = 64 \][/tex]

2. Calculate the two solutions:

Using the quadratic formula, we find the roots [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex]:

[tex]\[ x_{1,2} = \frac{-B \pm \sqrt{\Delta}}{2A} \][/tex]

Substitute the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(\Delta\)[/tex]:

[tex]\[ x_{1,2} = \frac{-4 \pm \sqrt{64}}{2 \cdot 4} = \frac{-4 \pm 8}{8} \][/tex]

3. Determine the individual roots:

- For [tex]\(x_1\)[/tex]:

[tex]\[ x_1 = \frac{-4 + 8}{8} = \frac{4}{8} = 0.5 \][/tex]

- For [tex]\(x_2\)[/tex]:

[tex]\[ x_2 = \frac{-4 - 8}{8} = \frac{-12}{8} = -1.5 \][/tex]

Therefore, the roots of the equation [tex]\(4x^2 + 4x - 3 = 0\)[/tex] are:

[tex]\[ x = 0.5 \quad \text{and} \quad x = -1.5 \][/tex]

The correct choice from the given options is:

[tex]\[ x = (-1.5, 0.5) \][/tex]