Matrix [tex]\(C\)[/tex] is a transformation of matrix [tex]\(B\)[/tex], and matrix [tex]\(B\)[/tex] is a transformation of matrix [tex]\(A\)[/tex], as shown below.

[tex]\[ A=\left[\begin{array}{ccc|c}
2 & -2 & 4 & 6 \\
1 & 3 & 2 & 4 \\
2 & -1 & 4 & 6
\end{array}\right] \xrightarrow{\frac{1}{2} R_1 \rightarrow R_1} \text{ Matrix } B \xrightarrow{-R_1 + R_2 \rightarrow R_2} \text{ Matrix } C \][/tex]

Which matrix represents matrix [tex]\(C\)[/tex]?



Answer :

To find matrix [tex]\( C \)[/tex], we need to apply a series of row operations to transform matrix [tex]\( A \)[/tex] step-by-step.

### Step 1: Transform Matrix [tex]\( A \)[/tex] to Matrix [tex]\( B \)[/tex]
Matrix [tex]\( A \)[/tex] is given as:
[tex]\[ A=\begin{pmatrix} 2 & -2 & 4 & 6 \\ 1 & 3 & 2 & 4 \\ 2 & -1 & 4 & 6 \end{pmatrix} \][/tex]

The first row operation is [tex]\(\frac{1}{2} R_1 \rightarrow R_1\)[/tex]:
This means we divide all elements of the first row by 2.

[tex]\[ \text{Row}_1 = \left(2, -2, 4, 6\right) \div 2 = \left(1, -1, 2, 3\right) \][/tex]

Therefore, matrix [tex]\( B \)[/tex] becomes:
[tex]\[ B=\begin{pmatrix} 1 & -1 & 2 & 3 \\ 1 & 3 & 2 & 4 \\ 2 & -1 & 4 & 6 \end{pmatrix} \][/tex]

### Step 2: Transform Matrix [tex]\( B \)[/tex] to Matrix [tex]\( C \)[/tex]
The next row operation is [tex]\(-R_1 + R_2 \rightarrow R_2\)[/tex]:
This means we subtract the first row from the second row and replace the second row with the result.

[tex]\[ \text{Row}_2 = \left(1, 3, 2, 4\right) - \left(1, -1, 2, 3\right) = \left(0, 4, 0, 1\right) \][/tex]

Thus, matrix [tex]\( C \)[/tex] becomes:
[tex]\[ C=\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 4 & 0 & 1 \\ 2 & -1 & 4 & 6 \end{pmatrix} \][/tex]

So, the matrix [tex]\( C \)[/tex] that represents the final transformation is:

[tex]\[ C=\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 4 & 0 & 1 \\ 2 & -1 & 4 & 6 \end{pmatrix} \][/tex]