Which of the following is the simplified expression of [tex]$1-\frac{1}{\sin^2 x}$[/tex]?

A. [tex]\cot^2 x[/tex]
B. [tex]-\cot^2 x[/tex]
C. [tex]\tan^2 x[/tex]
D. [tex]-\tan^2 x[/tex]



Answer :

To simplify the expression [tex]\(1 - \frac{1}{\sin^2 x}\)[/tex], we follow these steps:

1. Express [tex]\( \frac{1}{\sin^2 x} \)[/tex] in terms of cotangent:
Recall the identity involving cotangent and sine:
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
So,
[tex]\[ \cot^2 x = \left(\frac{\cos x}{\sin x}\right)^2 = \frac{\cos^2 x}{\sin^2 x} \][/tex]

2. Simplify the fraction:
[tex]\[ \frac{1}{\sin^2 x} \][/tex]

3. Substitute [tex]\(\frac{1}{\sin^2 x}\)[/tex] back into the original expression:
[tex]\[ 1 - \frac{1}{\sin^2 x} \][/tex]

4. Use the Pythagorean identity for sine and cosine:
Recall,
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Dividing each term by [tex]\(\sin^2 x\)[/tex] gives:
[tex]\[ 1 + \cot^2 x = \frac{1}{\sin^2 x} \][/tex]
Hence,
[tex]\[ \frac{1}{\sin^2 x} = 1 + \cot^2 x \][/tex]

5. Substitute this result back into the expression:
[tex]\[ 1 - \frac{1}{\sin^2 x} = 1 - (1 + \cot^2 x) \][/tex]

6. Simplify the expression:
[tex]\[ 1 - 1 - \cot^2 x = -\cot^2 x \][/tex]

Thus, the simplified expression for [tex]\(1 - \frac{1}{\sin^2 x}\)[/tex] is:
[tex]\[ -\cot^2 x \][/tex]

So the correct answer is:
[tex]\[ -\cot^2 x \][/tex]