Select the best answer for the question.

Find the possible value or values of [tex]y[/tex] in the quadratic equation [tex]4 - 4y - y^2 = 0[/tex].

A. [tex]y = -2 + 2\sqrt{2}, y = -2 - 2\sqrt{2}[/tex]
B. [tex]y = 2[/tex]
C. [tex]y = -4, y = 1[/tex]
D. [tex]y = -3, y = -1[/tex]



Answer :

To solve the quadratic equation [tex]\(4 - 4y - y^2 = 0\)[/tex] for [tex]\(y\)[/tex], follow these steps:

1. Identify the standard form of the quadratic equation:
The given quadratic equation is [tex]\(4 - 4y - y^2 = 0\)[/tex]. We can rewrite it as [tex]\(-y^2 - 4y + 4 = 0\)[/tex].

2. Rearrange the equation:
For convenience, we can multiply the entire equation by [tex]\(-1\)[/tex] to make it more standard:
[tex]\[ y^2 + 4y - 4 = 0. \][/tex]

3. Solve the quadratic equation using the quadratic formula:

The quadratic formula is:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \][/tex]
For our equation [tex]\(y^2 + 4y - 4 = 0\)[/tex], the coefficients are:
[tex]\(a = 1\)[/tex], [tex]\(b = 4\)[/tex], and [tex]\(c = -4\)[/tex].

4. Calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 4^2 - 4 \cdot 1 \cdot (-4) = 16 + 16 = 32. \][/tex]

5. Substitute the values into the quadratic formula:
[tex]\[ y = \frac{-4 \pm \sqrt{32}}{2 \cdot 1} = \frac{-4 \pm 4\sqrt{2}}{2}. \][/tex]

6. Simplify the solutions:
[tex]\[ y = \frac{-4 + 4\sqrt{2}}{2} = -2 + 2\sqrt{2}, \][/tex]
[tex]\[ y = \frac{-4 - 4\sqrt{2}}{2} = -2 - 2\sqrt{2}. \][/tex]

Thus, the possible values of [tex]\(y\)[/tex] are:
[tex]\[ y = -2 + 2\sqrt{2}, \quad y = -2 - 2\sqrt{2}. \][/tex]

Therefore, the correct answer is:
A. [tex]\(y = -2 + 2\sqrt{2}, y = -2 - 2\sqrt{2}\)[/tex].