Dina encoded a secret phrase using matrix multiplication. She multiplied the clear text code for each letter by the matrix [tex]$C=\left[\begin{array}{cc}-2 & 1 \\ 3 & -1\end{array}\right]$[/tex] to get a matrix that represents the encoded text. By which matrix does Dina multiply the encoded text to get the matrix for the clear text code?

A. [tex]\left[\begin{array}{cc}-1 & -1 \\ -3 & -2\end{array}\right][/tex]

B. [tex]\left[\begin{array}{cc}2 & -1 \\ -3 & 1\end{array}\right][/tex]

C. [tex]\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 3 & 2\end{array}\right][/tex]

D. [tex]\left.\left\lvert\, \begin{array}{ll}-2 & 1 \\ - & 1\end{array}\right.\right][/tex]



Answer :

To determine by which matrix Dina should multiply the encoded text to retrieve the clear text code, we need to find the inverse of the encoding matrix [tex]\( C \)[/tex].

Given the encoding matrix [tex]\( C \)[/tex] is:
[tex]\[ C = \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix} \][/tex]

The inverse of a 2x2 matrix [tex]\( C \)[/tex], where
[tex]\[ C = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \][/tex]

is calculated using the formula:
[tex]\[ C^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \][/tex]

Plugging in our values where [tex]\( a = -2 \)[/tex], [tex]\( b = 1 \)[/tex], [tex]\( c = 3 \)[/tex], and [tex]\( d = -1 \)[/tex], we compute:

1. Calculate the determinant [tex]\( ad - bc \)[/tex]:
[tex]\[ \text{Det}(C) = (-2 \cdot -1) - (1 \cdot 3) = 2 - 3 = -1 \][/tex]

2. Substitute into the inverse matrix formula:
[tex]\[ C^{-1} = \frac{1}{-1} \begin{bmatrix} -1 & -1 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \][/tex]

Thus, the matrix that will convert the encoded text back to the clear text code is:
[tex]\[ \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \][/tex]

So, the correct answer is:
[tex]\[ \left(\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right] \][/tex]