Which of the following products represents [tex]$6 \frac{3}{4} \%$[/tex] tax, in dollars, on a price of [tex]\$ 14.29[/tex]?

a. [tex](0.00675)(14.29)[/tex]
b. [tex](0.0675)(14.29)[/tex]
c. [tex](0.675)(14.29)[/tex]
d. [tex](6.75)(14.29)[/tex]

Please select the best answer from the choices provided:
A. a
B. b
C. c
D. d



Answer :

To determine which product represents a [tex]$6 \frac{3}{4} \%$[/tex] tax on a price of [tex]$14.29, we'll convert the percent to a decimal and then compute the tax. 1. Convert $[/tex]6 \frac{3}{4} \%[tex]$ to a decimal: - First, convert the mixed number to an improper fraction: \[ 6 \frac{3}{4} = \frac{6 \times 4 + 3}{4} = \frac{24 + 3}{4} = \frac{27}{4} \] - To convert to a percentage, divide by 100: \[ \frac{27}{4} \% = \frac{27}{4 \times 100} = \frac{27}{400} = 0.0675 \] 2. Calculate the tax: - Multiply the price, $[/tex]14.29, by the decimal equivalent of the percentage:
[tex]\[ 0.0675 \times 14.29 \][/tex]

3. Compare the products:
- Option a: [tex]\(0.00675 \times 14.29\)[/tex]
- Option b: [tex]\(0.0675 \times 14.29\)[/tex]
- Option c: [tex]\(0.675 \times 14.29\)[/tex]
- Option d: [tex]\(6.75 \times 14.29\)[/tex]

Since the tax is calculated as:
[tex]\[ 0.0675 \times 14.29, \][/tex]
the correct product is given by Option b.

Therefore, the best answer is:
B