Solve: [tex]M = 7a + 5ab[/tex] for [tex]a[/tex].

Select one:
a. [tex]\frac{M}{7 - 5b}[/tex]
b. [tex]M(7 + 5b)[/tex]
c. [tex]\frac{M}{7 + 5b}[/tex]
d. [tex]M(7 - 5b)[/tex]



Answer :

To solve the equation [tex]\(M = 7a + 5ab\)[/tex] for [tex]\(a\)[/tex], follow these detailed steps:

1. Start with the given equation:
[tex]\[ M = 7a + 5ab \][/tex]

2. Factor [tex]\(a\)[/tex] out of the right-hand side of the equation:
[tex]\[ M = a(7 + 5b) \][/tex]

3. Isolate [tex]\(a\)[/tex] by dividing both sides of the equation by [tex]\((7 + 5b)\)[/tex]:
[tex]\[ a = \frac{M}{7 + 5b} \][/tex]

Now let's match the solution against the provided multiple-choice options:
- Option a: [tex]\( \frac{M}{7 - 5b} \)[/tex]
- Option b: [tex]\( M(7 + 5b) \)[/tex]
- Option c: [tex]\( \frac{M}{7 + 5b} \)[/tex]
- Option d: [tex]\( M(7 - 5b) \)[/tex]

The correct solution is [tex]\( a = \frac{M}{7 + 5b} \)[/tex], which corresponds to option (c).

Therefore, the correct answer is:
[tex]\[ (c) \frac{M}{7 + 5b} \][/tex]