What is the [tex]$y$[/tex]-intercept of the graph [tex]\( y = -x^6 - 6x^5 + 50x^3 + 45x^2 - 108x - 108 \)[/tex]?

A. [tex]\((0, -108)\)[/tex]

B. [tex]\((0, -3)\)[/tex]

C. There is no [tex]\( y \)[/tex]-intercept

D. [tex]\((2, 0)\)[/tex]



Answer :

To determine the [tex]\( y \)[/tex]-intercept of the graph of the function [tex]\( y = -x^6 - 6x^5 + 50x^3 + 45x^2 - 108x - 108 \)[/tex], we need to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 0.

The [tex]\( y \)[/tex]-intercept is the point where the graph intersects the [tex]\( y \)[/tex]-axis, which happens when [tex]\( x = 0 \)[/tex].

Let's substitute [tex]\( x = 0 \)[/tex] into the equation:

[tex]\[ y = -0^6 - 6 \cdot 0^5 + 50 \cdot 0^3 + 45 \cdot 0^2 - 108 \cdot 0 - 108 \][/tex]

Calculating each term:

[tex]\[ 0^6 = 0 \][/tex]
[tex]\[ 6 \cdot 0^5 = 0 \][/tex]
[tex]\[ 50 \cdot 0^3 = 0 \][/tex]
[tex]\[ 45 \cdot 0^2 = 0 \][/tex]
[tex]\[ 108 \cdot 0 = 0 \][/tex]

Thus, the equation simplifies to:

[tex]\[ y = 0 - 0 + 0 + 0 - 0 - 108 \][/tex]

This simplifies further to:

[tex]\[ y = -108 \][/tex]

Therefore, the [tex]\( y \)[/tex]-intercept of the graph is [tex]\( (0, -108) \)[/tex].

So, the correct answer is:
A. [tex]\((0, -108)\)[/tex]