37. What is the result of [tex]$-4x$[/tex] multiplied by [tex]$x^3 - x^2 + x - 1$[/tex]?

A. [tex]$-4x^4 + 4x^3 + 4x^2 - 4x$[/tex]
B. [tex][tex]$-4x^4 - 4x^3 - 4x^2 + 4x$[/tex][/tex]
C. [tex]$-4x^4 - 4x^3 + 4x^2 - 4x$[/tex]
D. [tex]$-4x^4 + 4x^3 - 4x^2 + 4x$[/tex]



Answer :

To solve the problem of multiplying [tex]\(-4x\)[/tex] by the polynomial [tex]\(x^3 - x^2 + x - 1\)[/tex], we'll follow a step-by-step multiplication process. Let's distribute [tex]\(-4x\)[/tex] to each term of the polynomial:

### Step-by-Step Multiplication:

1. Multiply [tex]\(-4x\)[/tex] by [tex]\(x^3\)[/tex]:
[tex]\[ -4x \cdot x^3 = -4x^4 \][/tex]

2. Multiply [tex]\(-4x\)[/tex] by [tex]\(-x^2\)[/tex]:
[tex]\[ -4x \cdot -x^2 = 4x^3 \][/tex]

3. Multiply [tex]\(-4x\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ -4x \cdot x = -4x^2 \][/tex]

4. Multiply [tex]\(-4x\)[/tex] by [tex]\(-1\)[/tex]:
[tex]\[ -4x \cdot -1 = 4x \][/tex]

Now, let's combine all the terms together to form the resulting polynomial:
[tex]\[ -4x^4 + 4x^3 - 4x^2 + 4x \][/tex]

So, the correct answer is:
[tex]\[ -4x^4 + 4x^3 - 4x^2 + 4x \][/tex]

Hence, the result of [tex]\(-4x\)[/tex] multiplied by [tex]\(x^3 - x^2 + x - 1\)[/tex] is [tex]\(-4x^4 + 4x^3 - 4x^2 + 4x\)[/tex].

Therefore, the answer is:
[tex]\[ \boxed{-4x^4 + 4x^3 - 4x^2 + 4x} \][/tex]