Answer :
To simplify the expression [tex]\(\frac{\csc x}{\cot x \sec x}\)[/tex], we can use trigonometric identities. Let's break it down step-by-step:
1. Recall the trigonometric identities:
[tex]\[ \csc x = \frac{1}{\sin x} \][/tex]
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
[tex]\[ \sec x = \frac{1}{\cos x} \][/tex]
2. Substitute these identities into the given expression:
[tex]\[ \frac{\csc x}{\cot x \sec x} = \frac{\frac{1}{\sin x}}{\left(\frac{\cos x}{\sin x}\right) \left(\frac{1}{\cos x}\right)} \][/tex]
3. Simplify the denominator first:
[tex]\[ \left(\frac{\cos x}{\sin x}\right) \left(\frac{1}{\cos x}\right) = \frac{\cos x}{\sin x} \cdot \frac{1}{\cos x} \][/tex]
[tex]\[ = \frac{\cos x \cdot 1}{\sin x \cdot \cos x} = \frac{1}{\sin x} \][/tex]
4. Now the expression is:
[tex]\[ \frac{\frac{1}{\sin x}}{\frac{1}{\sin x}} \][/tex]
Which can be rewritten as:
[tex]\[ \frac{1/\sin x}{1/\sin x} = 1 \][/tex]
Therefore, the simplified expression is:
[tex]\[ 1 \][/tex]
1. Recall the trigonometric identities:
[tex]\[ \csc x = \frac{1}{\sin x} \][/tex]
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
[tex]\[ \sec x = \frac{1}{\cos x} \][/tex]
2. Substitute these identities into the given expression:
[tex]\[ \frac{\csc x}{\cot x \sec x} = \frac{\frac{1}{\sin x}}{\left(\frac{\cos x}{\sin x}\right) \left(\frac{1}{\cos x}\right)} \][/tex]
3. Simplify the denominator first:
[tex]\[ \left(\frac{\cos x}{\sin x}\right) \left(\frac{1}{\cos x}\right) = \frac{\cos x}{\sin x} \cdot \frac{1}{\cos x} \][/tex]
[tex]\[ = \frac{\cos x \cdot 1}{\sin x \cdot \cos x} = \frac{1}{\sin x} \][/tex]
4. Now the expression is:
[tex]\[ \frac{\frac{1}{\sin x}}{\frac{1}{\sin x}} \][/tex]
Which can be rewritten as:
[tex]\[ \frac{1/\sin x}{1/\sin x} = 1 \][/tex]
Therefore, the simplified expression is:
[tex]\[ 1 \][/tex]