11) Given [tex]$f(x) = -3x + 4$[/tex] and [tex]$g(x) = x^2 + 1$[/tex], find the following in simplified form. Show all work!

a) [tex][tex]$(f \circ g)(x) =$[/tex][/tex]



Answer :

To find [tex]\((f \circ g)(x)\)[/tex], which is the composition of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], we need to follow these steps:

### Step-by-Step Solution:

1. Understand the composition notation:
[tex]\((f \circ g)(x)\)[/tex] means [tex]\(f(g(x))\)[/tex]. We need to evaluate [tex]\(f\)[/tex] at [tex]\(g(x)\)[/tex], which means substituting [tex]\(g(x)\)[/tex] into [tex]\(f(x)\)[/tex].

2. Identify the functions:
[tex]\[ f(x) = -3x + 4 \][/tex]
[tex]\[ g(x) = x^2 + 1 \][/tex]

3. Substitute [tex]\(g(x)\)[/tex] into [tex]\(f(x)\)[/tex]:
We replace [tex]\(x\)[/tex] in [tex]\(f(x)\)[/tex] with [tex]\(g(x)\)[/tex]:
[tex]\[ (f \circ g)(x) = f(g(x)) = f(x^2 + 1) \][/tex]

4. Evaluate [tex]\(f(g(x))\)[/tex]:
Substitute [tex]\(x^2 + 1\)[/tex] into the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(x^2 + 1) = -3(x^2 + 1) + 4 \][/tex]

5. Distribute and simplify:
[tex]\[ = -3(x^2) - 3(1) + 4 \][/tex]
[tex]\[ = -3x^2 - 3 + 4 \][/tex]
[tex]\[ = -3x^2 + 1 \][/tex]

So, the simplified form of [tex]\((f \circ g)(x)\)[/tex] is:
[tex]\[ (f \circ g)(x) = -3x^2 + 1 \][/tex]

Thus, the final answer is:
[tex]\[ (f \circ g)(x) = -3x^2 + 1 \][/tex]