Answered

\begin{tabular}{rl}
[tex]$g(x)$[/tex] & [tex]$=2^{x+2}$[/tex] \\
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 1 \\
-1 & 2 \\
0 & 4 \\
\end{tabular}



Answer :

Let's solve the problem step by step, following the function definition [tex]\( g(x) = 2^{x+2} \)[/tex].

### Step-by-Step Solution

1. Identify the function: We are given a function [tex]\( g(x) = 2^{x+2} \)[/tex].

2. Evaluate the function at the given values of [tex]\( x \)[/tex]:

- For [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = 2^{(-2) + 2} = 2^0 = 1 \][/tex]
So, [tex]\( y = 1 \)[/tex].

- For [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = 2^{(-1) + 2} = 2^1 = 2 \][/tex]
So, [tex]\( y = 2 \)[/tex].

- For [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 2^{0 + 2} = 2^2 = 4 \][/tex]
So, [tex]\( y = 4 \)[/tex].

3. Summarize the results:
- [tex]\( g(-2) = 1 \)[/tex]
- [tex]\( g(-1) = 2 \)[/tex]
- [tex]\( g(0) = 4 \)[/tex]

These calculations give us the following table:
[tex]\[ \begin{array}{rl} g(x) & =2^{x+2} \\ x & y \\ \hline -2 & 1 \\ -1 & 2 \\ 0 & 4 \end{array} \][/tex]

Thus, the values of [tex]\( y \)[/tex] for [tex]\( x = -2, -1, \)[/tex] and [tex]\( 0 \)[/tex] are 1, 2, and 4 respectively.