Answer :
Let's solve the problem step-by-step.
We need to determine the probability that Ginger will have pizza available for lunch every day next week. This entails calculating the proportion of digits in the provided table that represent the availability of pizza, which are the digits 2 through 9 (inclusive).
### Step 1: List All Digits from the Table
#### First Row
- 08458 → 0, 8, 4, 5, 8
- 47165 → 4, 7, 1, 6, 5
- 68194 → 6, 8, 1, 9, 4
- 88490 → 8, 8, 4, 9, 0
- 01841 → 0, 1, 8, 4, 1
#### Second Row
- 43226 → 4, 3, 2, 2, 6
- 12924 → 1, 2, 9, 2, 4
- 52568 → 5, 2, 5, 6, 8
- 93039 → 9, 3, 0, 3, 9
- 39406 → 3, 9, 4, 0, 6
### Step 2: Count the Total Number of Digits
Each of the two rows contains 5 numbers, and each number consists of 5 digits, giving us:
[tex]\[ 2 \text{ rows} \times 5 \text{ numbers per row} \times 5 \text{ digits per number} = 50 \text{ digits} \][/tex]
### Step 3: Count the Number of Digits Representing Pizza Availability
We need to count how many of these 50 digits are between 2 and 9 (inclusive):
From the first row:
- 08458 → 8, 4, 5, 8 (4 digits)
- 47165 → 4, 7, 6, 5 (4 digits)
- 68194 → 6, 8, 9, 4 (4 digits)
- 88490 → 8, 8, 4, 9 (4 digits)
- 01841 → 8, 4 (2 digits)
Pizza availability in the first row: [tex]\(4 + 4 + 4 + 4 + 2 = 18\)[/tex] digits
From the second row:
- 43226 → 4, 3, 2, 2, 6 (5 digits)
- 12924 → 2, 9, 2, 4 (4 digits)
- 52568 → 5, 2, 5, 6, 8 (5 digits)
- 93039 → 9, 3, 3, 9 (4 digits)
- 39406 → 3, 9, 4, 6 (4 digits)
Pizza availability in the second row: [tex]\(5 + 4 + 5 + 4 + 4 = 22\)[/tex] digits
Total pizza availability: [tex]\(18 + 22 = 40\)[/tex] digits
### Step 4: Determine the Probability
The probability that Ginger will have pizza available is the ratio of the number of pizza-available digits to the total number of digits:
[tex]\[ \text{Probability} = \frac{\text{Number of pizza-available digits}}{\text{Total number of digits}} = \frac{40}{50} = 0.8 \][/tex]
### Conclusion
The correct answer is:
[tex]\[ \boxed{0.8} \][/tex]
We need to determine the probability that Ginger will have pizza available for lunch every day next week. This entails calculating the proportion of digits in the provided table that represent the availability of pizza, which are the digits 2 through 9 (inclusive).
### Step 1: List All Digits from the Table
#### First Row
- 08458 → 0, 8, 4, 5, 8
- 47165 → 4, 7, 1, 6, 5
- 68194 → 6, 8, 1, 9, 4
- 88490 → 8, 8, 4, 9, 0
- 01841 → 0, 1, 8, 4, 1
#### Second Row
- 43226 → 4, 3, 2, 2, 6
- 12924 → 1, 2, 9, 2, 4
- 52568 → 5, 2, 5, 6, 8
- 93039 → 9, 3, 0, 3, 9
- 39406 → 3, 9, 4, 0, 6
### Step 2: Count the Total Number of Digits
Each of the two rows contains 5 numbers, and each number consists of 5 digits, giving us:
[tex]\[ 2 \text{ rows} \times 5 \text{ numbers per row} \times 5 \text{ digits per number} = 50 \text{ digits} \][/tex]
### Step 3: Count the Number of Digits Representing Pizza Availability
We need to count how many of these 50 digits are between 2 and 9 (inclusive):
From the first row:
- 08458 → 8, 4, 5, 8 (4 digits)
- 47165 → 4, 7, 6, 5 (4 digits)
- 68194 → 6, 8, 9, 4 (4 digits)
- 88490 → 8, 8, 4, 9 (4 digits)
- 01841 → 8, 4 (2 digits)
Pizza availability in the first row: [tex]\(4 + 4 + 4 + 4 + 2 = 18\)[/tex] digits
From the second row:
- 43226 → 4, 3, 2, 2, 6 (5 digits)
- 12924 → 2, 9, 2, 4 (4 digits)
- 52568 → 5, 2, 5, 6, 8 (5 digits)
- 93039 → 9, 3, 3, 9 (4 digits)
- 39406 → 3, 9, 4, 6 (4 digits)
Pizza availability in the second row: [tex]\(5 + 4 + 5 + 4 + 4 = 22\)[/tex] digits
Total pizza availability: [tex]\(18 + 22 = 40\)[/tex] digits
### Step 4: Determine the Probability
The probability that Ginger will have pizza available is the ratio of the number of pizza-available digits to the total number of digits:
[tex]\[ \text{Probability} = \frac{\text{Number of pizza-available digits}}{\text{Total number of digits}} = \frac{40}{50} = 0.8 \][/tex]
### Conclusion
The correct answer is:
[tex]\[ \boxed{0.8} \][/tex]