- Let 0 and 1 = no pizza available.
- Let 2, 3, 4, 5, 6, 7, 8, and 9 = pizza available.

The table shows the results of the simulation:
\begin{tabular}{|l|l|l|l|l|}
\hline
08458 & 47165 & 68194 & 88490 & 01841 \\
\hline
43226 & 12924 & 52568 & 93039 & 39406 \\
\hline
\end{tabular}

What is the estimated probability that Ginger will eat pizza for lunch every day next week?

A. 0.8
B. 0.4
C. 0.2
D. 0.0



Answer :

Let's solve the problem step-by-step.

We need to determine the probability that Ginger will have pizza available for lunch every day next week. This entails calculating the proportion of digits in the provided table that represent the availability of pizza, which are the digits 2 through 9 (inclusive).

### Step 1: List All Digits from the Table

#### First Row
- 08458 → 0, 8, 4, 5, 8
- 47165 → 4, 7, 1, 6, 5
- 68194 → 6, 8, 1, 9, 4
- 88490 → 8, 8, 4, 9, 0
- 01841 → 0, 1, 8, 4, 1

#### Second Row
- 43226 → 4, 3, 2, 2, 6
- 12924 → 1, 2, 9, 2, 4
- 52568 → 5, 2, 5, 6, 8
- 93039 → 9, 3, 0, 3, 9
- 39406 → 3, 9, 4, 0, 6

### Step 2: Count the Total Number of Digits

Each of the two rows contains 5 numbers, and each number consists of 5 digits, giving us:
[tex]\[ 2 \text{ rows} \times 5 \text{ numbers per row} \times 5 \text{ digits per number} = 50 \text{ digits} \][/tex]

### Step 3: Count the Number of Digits Representing Pizza Availability

We need to count how many of these 50 digits are between 2 and 9 (inclusive):

From the first row:
- 08458 → 8, 4, 5, 8 (4 digits)
- 47165 → 4, 7, 6, 5 (4 digits)
- 68194 → 6, 8, 9, 4 (4 digits)
- 88490 → 8, 8, 4, 9 (4 digits)
- 01841 → 8, 4 (2 digits)

Pizza availability in the first row: [tex]\(4 + 4 + 4 + 4 + 2 = 18\)[/tex] digits

From the second row:
- 43226 → 4, 3, 2, 2, 6 (5 digits)
- 12924 → 2, 9, 2, 4 (4 digits)
- 52568 → 5, 2, 5, 6, 8 (5 digits)
- 93039 → 9, 3, 3, 9 (4 digits)
- 39406 → 3, 9, 4, 6 (4 digits)

Pizza availability in the second row: [tex]\(5 + 4 + 5 + 4 + 4 = 22\)[/tex] digits

Total pizza availability: [tex]\(18 + 22 = 40\)[/tex] digits

### Step 4: Determine the Probability

The probability that Ginger will have pizza available is the ratio of the number of pizza-available digits to the total number of digits:
[tex]\[ \text{Probability} = \frac{\text{Number of pizza-available digits}}{\text{Total number of digits}} = \frac{40}{50} = 0.8 \][/tex]

### Conclusion

The correct answer is:
[tex]\[ \boxed{0.8} \][/tex]