What is the simplified form of [tex]\sqrt{\frac{2160 x^8}{60 x^2}}[/tex]? Assume [tex]x \neq 0[/tex].

A. [tex]36 x^3[/tex]
B. [tex]36 x^2[/tex]
C. [tex]6 x^3[/tex]
D. [tex]6 x^2[/tex]



Answer :

To simplify the expression [tex]\(\sqrt{\frac{2160 x^8}{60 x^2}}\)[/tex], follow these steps:

1. Simplify the fraction inside the square root:

[tex]\[ \frac{2160 x^8}{60 x^2} \][/tex]

Divide the coefficients:

[tex]\[ \frac{2160}{60} = 36 \][/tex]

Simplify the exponents of [tex]\(x\)[/tex]:

[tex]\[ \frac{x^8}{x^2} = x^{8-2} = x^6 \][/tex]

So the expression simplifies to:

[tex]\[ 36 x^6 \][/tex]

2. Take the square root of the simplified expression:

[tex]\[ \sqrt{36 x^6} \][/tex]

3. Separate the square root into the product of two square roots:

[tex]\[ \sqrt{36} \cdot \sqrt{x^6} \][/tex]

4. Calculate the square root of the constant term:

[tex]\[ \sqrt{36} = 6 \][/tex]

5. Simplify the square root of the variable term:

[tex]\[ \sqrt{x^6} = x^{6/2} = x^3 \][/tex]

6. Combine the results:

[tex]\[ 6 \cdot x^3 = 6 x^3 \][/tex]

Therefore, the simplified form of [tex]\(\sqrt{\frac{2160 x^8}{60 x^2}}\)[/tex] is:

[tex]\[ 6 x^3 \][/tex]

So, the correct answer is:

[tex]\(6 x^3\)[/tex]