Let's compute the missing values for the ordered pairs given the equation [tex]\( y = -5x - 4 \)[/tex].
### Ordered Pair [tex]\( (1, y) \)[/tex]
1. Identify the known values:
- For this ordered pair, [tex]\( x = 1 \)[/tex].
2. Substitute the known value into the equation:
[tex]\[
y = -5(1) - 4
\][/tex]
3. Perform the arithmetic operation:
[tex]\[
y = -5 - 4
\][/tex]
4. Simplify the result:
[tex]\[
y = -9
\][/tex]
Therefore, the complete ordered pair is [tex]\( (1, -9) \)[/tex].
### Ordered Pair [tex]\( (x, 1) \)[/tex]
1. Identify the known values:
- For this ordered pair, [tex]\( y = 1 \)[/tex].
2. Substitute the known value into the equation:
[tex]\[
1 = -5x - 4
\][/tex]
3. Solve for [tex]\( x \)[/tex]:
- First, isolate the term with [tex]\( x \)[/tex] by adding 4 to both sides of the equation:
[tex]\[
1 + 4 = -5x
\][/tex]
[tex]\[
5 = -5x
\][/tex]
- Next, divide both sides by [tex]\(-5\)[/tex]:
[tex]\[
x = \frac{5}{-5}
\][/tex]
[tex]\[
x = -1
\][/tex]
Therefore, the complete ordered pair is [tex]\((-1, 1)\)[/tex].
### Summary
- For the ordered pair [tex]\( (1, y) \)[/tex], we have [tex]\( y = -9 \)[/tex], resulting in the pair [tex]\( (1, -9) \)[/tex].
- For the ordered pair [tex]\( (x, 1) \)[/tex], we have [tex]\( x = -1 \)[/tex], resulting in the pair [tex]\((-1, 1) \)[/tex].