Answered

Given the equation and the following ordered pairs: [tex]$(1, y)$[/tex] and [tex]$(x, 1)$[/tex],

[tex]\[ y = -5x - 4 \][/tex]

Compute the missing [tex]$x$[/tex] and [tex]$y$[/tex] values so that each ordered pair will satisfy the given equation.



Answer :

Let's compute the missing values for the ordered pairs given the equation [tex]\( y = -5x - 4 \)[/tex].

### Ordered Pair [tex]\( (1, y) \)[/tex]

1. Identify the known values:
- For this ordered pair, [tex]\( x = 1 \)[/tex].

2. Substitute the known value into the equation:
[tex]\[ y = -5(1) - 4 \][/tex]

3. Perform the arithmetic operation:
[tex]\[ y = -5 - 4 \][/tex]

4. Simplify the result:
[tex]\[ y = -9 \][/tex]

Therefore, the complete ordered pair is [tex]\( (1, -9) \)[/tex].

### Ordered Pair [tex]\( (x, 1) \)[/tex]

1. Identify the known values:
- For this ordered pair, [tex]\( y = 1 \)[/tex].

2. Substitute the known value into the equation:
[tex]\[ 1 = -5x - 4 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
- First, isolate the term with [tex]\( x \)[/tex] by adding 4 to both sides of the equation:
[tex]\[ 1 + 4 = -5x \][/tex]
[tex]\[ 5 = -5x \][/tex]

- Next, divide both sides by [tex]\(-5\)[/tex]:
[tex]\[ x = \frac{5}{-5} \][/tex]
[tex]\[ x = -1 \][/tex]

Therefore, the complete ordered pair is [tex]\((-1, 1)\)[/tex].

### Summary
- For the ordered pair [tex]\( (1, y) \)[/tex], we have [tex]\( y = -9 \)[/tex], resulting in the pair [tex]\( (1, -9) \)[/tex].
- For the ordered pair [tex]\( (x, 1) \)[/tex], we have [tex]\( x = -1 \)[/tex], resulting in the pair [tex]\((-1, 1) \)[/tex].