Answered

Given the equation and the following ordered pair: [tex]\((4, y)\)[/tex]

[tex]\[ y = 2x - 3 \][/tex]

Compute the missing [tex]\( y \)[/tex] value so that the ordered pair will satisfy the given equation.

Fill in the table below:

\begin{tabular}{|l|l|}
\hline
[tex]\( x \)[/tex] & [tex]\( y \)[/tex] \\
\hline
4 & \\
\hline
\end{tabular}



Answer :

Certainly! Let's solve the problem step by step to find the missing values in the ordered pair [tex]\((4, y)\)[/tex] for the given equation [tex]\( y = 2x - 3 \)[/tex].

1. Identify the given values and the equation:
- We have [tex]\( x = 4 \)[/tex].
- The equation provided is [tex]\( y = 2x - 3 \)[/tex].

2. Substitute [tex]\( x = 4 \)[/tex] into the equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 2(4) - 3 \][/tex]

3. Perform the multiplication first:
[tex]\[ y = 8 - 3 \][/tex]

4. Subtract [tex]\( 3 \)[/tex] from [tex]\( 8 \)[/tex]:
[tex]\[ y = 5 \][/tex]

5. The ordered pair [tex]\((4, y)\)[/tex] is now [tex]\((4, 5)\)[/tex].

Therefore, the complete ordered pair that satisfies the equation [tex]\( y = 2x - 3 \)[/tex] when [tex]\( x = 4 \)[/tex] is [tex]\((4, 5)\)[/tex].

To summarize, here is the completed table with the ordered pair:
\begin{tabular}{|l|l|}
\hline[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline[tex]$4$[/tex] & [tex]$5$[/tex] \\
\hline
\end{tabular}