Simplify [tex]\frac{15 a^6 b c^4}{35 a^2 c^4}[/tex]

A. [tex]20 a^3 b[/tex]

B. [tex]\frac{3 a^4 b}{7}[/tex]

C. [tex]20 a^4 b[/tex]

D. [tex]\frac{3 a^3 b}{7}[/tex]



Answer :

To simplify the expression [tex]\(\frac{15 a^6 b c^4}{35 a^2 c^4}\)[/tex], we can follow these steps:

1. Simplify the Coefficients:

The numerical part of the expression is [tex]\(\frac{15}{35}\)[/tex]. Simplifying this fraction:
[tex]\[ \frac{15}{35} = \frac{3 \cdot 5}{7 \cdot 5} = \frac{3}{7} \][/tex]

2. Simplify the Powers of Variables:

- For [tex]\(a\)[/tex]:
Since the terms have [tex]\(a^6\)[/tex] in the numerator and [tex]\(a^2\)[/tex] in the denominator, we subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ a^{6-2} = a^4 \][/tex]

- For [tex]\(c\)[/tex]:
Since we have [tex]\(c^4\)[/tex] in both the numerator and the denominator, the exponents cancel each other out:
[tex]\[ c^{4-4} = c^0 = 1 \][/tex]
Therefore, [tex]\(c\)[/tex] is eliminated from the expression.

- For [tex]\(b\)[/tex]:
The variable [tex]\(b\)[/tex] is present only in the numerator, so it stays as it is.

3. Combine the Simplified Components:

Now, we combine the simplified parts:
[tex]\[ \frac{15 a^6 b c^4}{35 a^2 c^4} = \frac{3}{7} a^4 b \][/tex]

Hence, the simplified expression is:
[tex]\[ \frac{3 a^4 b}{7} \][/tex]

The correct choice from the given options is [tex]\(\frac{3 a^4 b}{7}\)[/tex].