Graph the exponential function:

[tex]\[ f(x) = \left(\frac{5}{3}\right)^x \][/tex]

Plot five points on the graph of the function and also draw the asymptote.



Answer :

To graph the exponential function [tex]\( f(x) = \left(\frac{5}{3}\right)^x \)[/tex], we will first identify a few key points on the function and then determine the horizontal asymptote. Here is a detailed, step-by-step solution:

### 1. Identify the Function
The given function is
[tex]\[ f(x) = \left(\frac{5}{3}\right)^x \][/tex]

### 2. Generate Points
We'll select five values of [tex]\( x \)[/tex] and calculate the corresponding [tex]\( y \)[/tex] values using our function. Let's choose [tex]\( x = -2, -1, 0, 1, 2 \)[/tex].

- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = \left(\frac{5}{3}\right)^{-2} \approx 0.36 \][/tex]

- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = \left(\frac{5}{3}\right)^{-1} \approx 0.6 \][/tex]

- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{5}{3}\right)^0 = 1 \][/tex]

- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \left(\frac{5}{3}\right)^1 \approx 1.67 \][/tex]

- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = \left(\frac{5}{3}\right)^2 \approx 2.78 \][/tex]

So, the points we have now are:
[tex]\[ (-2, 0.36), (-1, 0.6), (0, 1), (1, 1.67), (2, 2.78) \][/tex]

### 3. Determine the Asymptote
For the exponential function [tex]\( f(x) = \left(\frac{5}{3}\right)^x \)[/tex], the horizontal asymptote is the line [tex]\( y = 0 \)[/tex]. This is because as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( \left( \frac{5}{3} \right)^x \)[/tex] approaches zero but never actually reaches it.

### 4. Plot the Points and the Asymptote
Now, let's plot the points and the asymptote on a graph:

- Plot the points [tex]\( (-2, 0.36) \)[/tex], [tex]\( (-1, 0.6) \)[/tex], [tex]\( (0, 1) \)[/tex], [tex]\( (1, 1.67) \)[/tex], and [tex]\( (2, 2.78) \)[/tex].
- Draw a horizontal line at [tex]\( y = 0 \)[/tex] to represent the asymptote.

### Graph Representation
Here is a simplified version of what the graph looks like (you would need to construct this on graph paper or using graphing software for accuracy):

```
y
|
3 |
|
2 |

|
1 |
|

|
0 |------------------------------------------------ x
-2 -1 0 1 2
```
- Where each '
' represents a plotted point.
- The horizontal line along [tex]\( y = 0 \)[/tex] represents the asymptote (not drawn precisely in text format, but you should include it on graph paper or software).

### Conclusion
We have successfully plotted the points on the graph: [tex]\( (-2, 0.36), (-1, 0.6), (0, 1), (1, 1.67), (2, 2.78) \)[/tex]. The horizontal asymptote for the function [tex]\( f(x) = \left(\frac{5}{3}\right)^x \)[/tex] is [tex]\( y = 0 \)[/tex]. Now you can use the graph-a-function button in your graphing tool to visualize the function smoothly.