Answer :

To solve the given system of linear equations step-by-step, follow these instructions:

1. Simplify the First Equation:

The first equation is:
[tex]\[ 2x - 324 + 30 = 0 \][/tex]
Combine like terms:
[tex]\[ 2x - 294 = 0 \][/tex]
Isolate the variable x:
[tex]\[ 2x = 294 \][/tex]
Solve for x by dividing both sides by 2:
[tex]\[ x = \frac{294}{2} \][/tex]
Consequently:
[tex]\[ x = 147 \][/tex]

2. Substitute [tex]\( x = 147 \)[/tex] into the Second Equation:

The second equation is:
[tex]\[ 32x + 29y - 35 = 0 \][/tex]
Substitute [tex]\( x = 147 \)[/tex] into the equation:
[tex]\[ 32(147) + 29y - 35 = 0 \][/tex]
Calculate [tex]\( 32 \times 147 \)[/tex]:
[tex]\[ 32 \times 147 = 4704 \][/tex]
The equation then transforms into:
[tex]\[ 4704 + 29y - 35 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4704 - 35 + 29y = 0 \][/tex]
[tex]\[ 4669 + 29y = 0 \][/tex]
Isolate the variable y by subtracting 4669 from both sides:
[tex]\[ 29y = -4669 \][/tex]
Solve for y by dividing both sides by 29:
[tex]\[ y = \frac{-4669}{29} \][/tex]
Consequently:
[tex]\[ y = -161 \][/tex]

Thus, the solution to the system of linear equations is:
[tex]\[ x = 147, \quad y = -161 \][/tex]