A linear function contains the following points:
[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-4 & 4 \\
\hline
0 & 5 \\
\hline
\end{tabular}
\][/tex]

What are the slope and [tex]$y$[/tex]-intercept of this function?

A. The slope is [tex]$\frac{1}{4}$[/tex]. The [tex]$y$[/tex]-intercept is [tex]$(0,5)$[/tex].

B. The slope is 4. The [tex]$y$[/tex]-intercept is [tex]$(5,0)$[/tex].

C. The slope is -4. The [tex]$y$[/tex]-intercept is [tex]$(0,5)$[/tex].

D. The slope is [tex]$-\frac{1}{4}$[/tex]. The [tex]$y$[/tex]-intercept is [tex]$(0,5)$[/tex].



Answer :

To solve this problem, we need to determine the slope and the y-intercept of the linear function passing through the given points [tex]\((-4, 4)\)[/tex] and [tex]\((0, 5)\)[/tex].

Let's walk through the steps systematically:

### Step 1: Calculate the Slope
The slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Given points are:
[tex]\[ (x_1, y_1) = (-4, 4) \quad \text{and} \quad (x_2, y_2) = (0, 5) \][/tex]

Substitute these values into the slope formula:
[tex]\[ m = \frac{5 - 4}{0 - (-4)} = \frac{1}{4} \][/tex]

So, the slope [tex]\(m\)[/tex] is [tex]\(\frac{1}{4}\)[/tex].

### Step 2: Determine the y-Intercept
The y-intercept of a line is the point where the line crosses the y-axis. This occurs when [tex]\(x = 0\)[/tex]. From the given points, we can directly observe that when [tex]\(x = 0\)[/tex], [tex]\(y = 5\)[/tex].

Therefore, the y-intercept is [tex]\((0, 5)\)[/tex].

### Conclusion
With the calculated slope and identified y-intercept, we can conclude:

- The slope of the function is [tex]\(\frac{1}{4}\)[/tex].
- The y-intercept of the function is [tex]\((0, 5)\)[/tex].

Thus, the correct answer is:
A. The slope is [tex]\(\frac{1}{4}\)[/tex]. The y-intercept is [tex]\((0,5)\)[/tex].