Select the table that represents a linear function. (Graph them if necessary.)

A.
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 0 & 1 & 2 & 3 \\
\hline
[tex]$y$[/tex] & 10 & 9 & 7 & 4 \\
\hline
\end{tabular}

B.
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 0 & 1 & 2 & 3 \\
\hline
[tex]$y$[/tex] & 8 & 6 & 7 & 5 \\
\hline
\end{tabular}

C.
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 0 & 1 & 2 & 3 \\
\hline
[tex]$y$[/tex] & 11 & 8 & 5 & 2 \\
\hline
\end{tabular}

D.
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 0 & 1 & 2 & 3 \\
\hline
[tex]$y$[/tex] & 0 & 2 & 5 & 8 \\
\hline
\end{tabular}



Answer :

To determine which table represents a linear function, we'll check the differences between the [tex]\( y \)[/tex]-values for each table. A table represents a linear function if the differences between consecutive [tex]\( y \)[/tex]-values are constant.

Let's examine each table step-by-step:

### Table A:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 \\ \hline y & 10 & 9 & 7 & 4 \\ \hline \end{array} \][/tex]

Differences between [tex]\( y \)[/tex]-values:
[tex]\[ \begin{align*} 9 - 10 &= -1 \\ 7 - 9 &= -2 \\ 4 - 7 &= -3 \\ \end{align*} \][/tex]

The differences are [tex]\(-1\)[/tex], [tex]\(-2\)[/tex], and [tex]\(-3\)[/tex], which are not constant. So, Table A does not represent a linear function.

### Table B:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 \\ \hline y & 8 & 6 & 7 & 5 \\ \hline \end{array} \][/tex]

Differences between [tex]\( y \)[/tex]-values:
[tex]\[ \begin{align*} 6 - 8 &= -2 \\ 7 - 6 &= 1 \\ 5 - 7 &= -2 \\ \end{align*} \][/tex]

The differences are [tex]\(-2\)[/tex], [tex]\(1\)[/tex], and [tex]\(-2\)[/tex], which are not constant. So, Table B does not represent a linear function.

### Table C:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 \\ \hline y & 11 & 8 & 5 & 2 \\ \hline \end{array} \][/tex]

Differences between [tex]\( y \)[/tex]-values:
[tex]\[ \begin{align*} 8 - 11 &= -3 \\ 5 - 8 &= -3 \\ 2 - 5 &= -3 \\ \end{align*} \][/tex]

The differences are [tex]\(-3\)[/tex] each time, which are constant. Thus, Table C represents a linear function.

### Table D:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 \\ \hline y & 0 & 2 & 5 & 8 \\ \hline \end{array} \][/tex]

Differences between [tex]\( y \)[/tex]-values:
[tex]\[ \begin{align*} 2 - 0 &= 2 \\ 5 - 2 &= 3 \\ 8 - 5 &= 3 \\ \end{align*} \][/tex]

The differences are [tex]\(2\)[/tex], [tex]\(3\)[/tex], and [tex]\(3\)[/tex], which are not constant. So, Table D does not represent a linear function.

From our step-by-step checks, we can conclude that the table representing a linear function is:

[tex]\[ \text{Table C} \][/tex]